Wettability of acid volcanic reservoir rock from the Hailar Oilfield, China, was studied with crude oils of different acid numbers generated from an original crude oil with an acid number of 3.05 mg KOH/g. The modifed...Wettability of acid volcanic reservoir rock from the Hailar Oilfield, China, was studied with crude oils of different acid numbers generated from an original crude oil with an acid number of 3.05 mg KOH/g. The modifed oils and their resultant acid numbers were: A (2.09 mg KOH/g), B (0.75 mg KOH/g), C (0.47 mg KOH/g), D (0.30 mg KOH/g), and E (0.18 mg KOH/g). Contact angles and improved Amott water indexes were measured to study the effects of temperature and acid number on the wettability of the acid volcanic reservoir rock. Experimental results indicated that the wettability was not sensitive to variation in temperature when using the same oil, but the acid number of the crude oil was a key factor in changing the wettability of the rock. The Amott water index, Iw was an exponential function of the acid number, and the Amott water index increased as the acid number decreased (i.e. Amott water index exponentially decreased with the acid number increase). The Iw value of the core saturated with oil A, with an acid number of 2.09 mg KOH/g, ranged from 0.06 to 0.11, which indicated low water wetness. If the acid number of the oil decreased to 0.18 mg KOH/g, the Iw value increased to 0.95, which indicated strong water wetness. The contact angle decreased from 80~ to 35~ when the aid number decreased from 0.75 to 0.18 mg KOH/g, indicating a change towards more water wet conditions. The oil recovery by spontaneous imbibition of water also increased as the acid number of the oil decreased. As an example, at 80 ~C, the recovery of Oil A with an acid number of 2.09 mg KOH/g was only 7.6%, while Oil E with an acid number of 0.18 mg KOH/g produced 56.4%, i.e. an increase of 48.8%.展开更多
Polymers play an important role in hybrid enhanced oil recovery (EOR), which involves both a polymer and low-salinity water. Because the polymer commonly used for low-salinity polymer flooding (LSPF) is strongly sensi...Polymers play an important role in hybrid enhanced oil recovery (EOR), which involves both a polymer and low-salinity water. Because the polymer commonly used for low-salinity polymer flooding (LSPF) is strongly sensitive to brine pH, its efficiency can deteriorate in carbonate reservoirs containing highly acidic formation water. In this study, polymer efficiency in an acidic carbonate reservoir was investigated experimentally for different salinity levels and SO42− concentrations. Results indicated that lowering salinity improved polymer stability, resulting in less polymer adsorption, greater wettability alteration, and ultimately, higher oil recovery. However, low salinity may not be desirable for LSPF if the injected fluid does not contain a sufficient number of sulfate (SO42−) ions. Analysis of polymer efficiency showed that more oil can be produced with the same polymer concentration by adjusting the SO42− content. Therefore, when river water, which is relatively easily available in onshore fields, is designed to be injected into an acidic carbonate reservoir, the LSPF method proposed in this study can be a reliable and environmentally friendly method with addition of a sufficient number of SO42− ions to river water.展开更多
文摘Wettability of acid volcanic reservoir rock from the Hailar Oilfield, China, was studied with crude oils of different acid numbers generated from an original crude oil with an acid number of 3.05 mg KOH/g. The modifed oils and their resultant acid numbers were: A (2.09 mg KOH/g), B (0.75 mg KOH/g), C (0.47 mg KOH/g), D (0.30 mg KOH/g), and E (0.18 mg KOH/g). Contact angles and improved Amott water indexes were measured to study the effects of temperature and acid number on the wettability of the acid volcanic reservoir rock. Experimental results indicated that the wettability was not sensitive to variation in temperature when using the same oil, but the acid number of the crude oil was a key factor in changing the wettability of the rock. The Amott water index, Iw was an exponential function of the acid number, and the Amott water index increased as the acid number decreased (i.e. Amott water index exponentially decreased with the acid number increase). The Iw value of the core saturated with oil A, with an acid number of 2.09 mg KOH/g, ranged from 0.06 to 0.11, which indicated low water wetness. If the acid number of the oil decreased to 0.18 mg KOH/g, the Iw value increased to 0.95, which indicated strong water wetness. The contact angle decreased from 80~ to 35~ when the aid number decreased from 0.75 to 0.18 mg KOH/g, indicating a change towards more water wet conditions. The oil recovery by spontaneous imbibition of water also increased as the acid number of the oil decreased. As an example, at 80 ~C, the recovery of Oil A with an acid number of 2.09 mg KOH/g was only 7.6%, while Oil E with an acid number of 0.18 mg KOH/g produced 56.4%, i.e. an increase of 48.8%.
基金supported by the Energy Efficiency&Resources(No.20212010200010)the“Development of Intelligential Diagnosis,Abandonment Process and Management Technology for Decrepit Oil and Gas Wells”(No.20216110100010)of the Korea Institute of Energy Technology EvaluationPlanning(KETEP)grant funded by the Korean Government Ministry of Trade,Industry&Energy.
文摘Polymers play an important role in hybrid enhanced oil recovery (EOR), which involves both a polymer and low-salinity water. Because the polymer commonly used for low-salinity polymer flooding (LSPF) is strongly sensitive to brine pH, its efficiency can deteriorate in carbonate reservoirs containing highly acidic formation water. In this study, polymer efficiency in an acidic carbonate reservoir was investigated experimentally for different salinity levels and SO42− concentrations. Results indicated that lowering salinity improved polymer stability, resulting in less polymer adsorption, greater wettability alteration, and ultimately, higher oil recovery. However, low salinity may not be desirable for LSPF if the injected fluid does not contain a sufficient number of sulfate (SO42−) ions. Analysis of polymer efficiency showed that more oil can be produced with the same polymer concentration by adjusting the SO42− content. Therefore, when river water, which is relatively easily available in onshore fields, is designed to be injected into an acidic carbonate reservoir, the LSPF method proposed in this study can be a reliable and environmentally friendly method with addition of a sufficient number of SO42− ions to river water.