期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
A reservoir drying method for enhancing recovery of tight gas
1
作者 ZHANG Liehui XIONG Yu +5 位作者 ZHAO Yulong TANG Hongming GUO Jingjing JIA Chunsheng LEI Qiang WANG Binghe 《Petroleum Exploration and Development》 CSCD 2022年第1期144-155,共12页
Based on the study of damage mechanisms of generalized water blocking and related water-blocking removal methods, the drying agents for enhancing tight gas reservoir recovery were developed, and the basic properties, ... Based on the study of damage mechanisms of generalized water blocking and related water-blocking removal methods, the drying agents for enhancing tight gas reservoir recovery were developed, and the basic properties, injection mode and drying effect of the drying agents were evaluated. The chemical effect, thermal effect, salt resistance, salt resistance formulas and delay mechanism of the drying agent systems for different types of tight reservoirs were investigated through lab experiment. The solubility and solubilization properties of supercritical carbon dioxide on drying agent systems were tested.The injection mode of dissolving drying agent in supercritical carbon dioxide was proposed. The mechanisms of supercritical carbon dioxide with water in micropores of formation matrix were analyzed. Micro-pore structures and seepage characteristics of reservoir before and after drying were compared. Based on the characterization in combination of NMR and laser etched pore structure model, drying effects of the drying agents on bound water of different occurrences were evaluated qualitatively and quantitatively. Lattice Boltzmann method was used to evaluate the influence of drying effect on gas micro-seepage ability.The influence of drying effect on productivity and production performance of gas well was analyzed by numerical simulation.The drying effect can greatly reduce water saturation of tight reservoir and improve the gas seepage capacity in near wellbore and fractures. This work can provide guidance for developing new measures in enhancing recovery of tight gas reservoirs. 展开更多
关键词 tight gas reservoir drying enhancing gas recovery water-blocking removal drying agent seepage ability
下载PDF
Development status and research recommendations for thermal extraction technology in deep hot dry rock reservoirs
2
作者 Diquan Li Ning Li +4 位作者 Jing Jia Hongguang Yu Qinghu Fan Lichang Wang Ahmed Mohsen 《Deep Underground Science and Engineering》 2024年第3期317-325,共9页
Based on a comprehensive review of domestic and foreign literature, this article discusses the technical difficulties and development status of enhanced geothermal system(EGS) concerning the thermal energy extraction ... Based on a comprehensive review of domestic and foreign literature, this article discusses the technical difficulties and development status of enhanced geothermal system(EGS) concerning the thermal energy extraction of deep hot dry rock(HDR) reservoirs and proposes suggestions for the research focus of numerical simulation of HDR reservoir stimulation. Additionally, it summarizes the existing methods and mainstream working fluids for HDR reservoir stimulation. The article emphasizes the significance of factors such as well location, production well depth, artificial fracture orientation, and complexity in optimizing the thermal production efficiency of the EGS. Furthermore, this article delves into a detailed discussion on the influence of fracture spacing, fracture permeability,fracture length, fluid injection rate, and injected fluid temperature on the performance of the EGS. In light of the thermo-hydro-mechanical coupling challenges associated with high-temperature reservoirs, it is suggested that future research efforts should focus on investigating the impact of thermo-induced stresses on the stability of the artificial fracture network within the EGS during long-term(>30 years) circulation of hot and cold fluids. 展开更多
关键词 enhanced geothermal system hot dry rock reservoir thermoelastic stress thermo-hydro-mechanical coupling
下载PDF
CO_(2) storage in depleted gas reservoirs:A study on the effect of residual gas saturation 被引量:2
3
作者 Arshad Raza Raoof Gholami +3 位作者 Reza Rezaee Chua Han Bing Ramasamy Nagarajan Mohamed Ali Hamid 《Petroleum》 2018年第1期95-107,共13页
Depleted gas reservoirs are recognized as the most promising candidate for carbon dioxide storage.Primary gas production followed by injection of carbon dioxide after depletion is the strategy adopted for secondary ga... Depleted gas reservoirs are recognized as the most promising candidate for carbon dioxide storage.Primary gas production followed by injection of carbon dioxide after depletion is the strategy adopted for secondary gas recovery and storage practices.This strategy,however,depends on the injection strategy,reservoir characteristics and operational parameters.There have been many studies to-date discussing critical factors influencing the storage performance in depleted gas reservoirs while little attention was given to the effect of residual gas.In this paper,an attempt was made to highlight the importance of residual gas on the capacity,injectivity,reservoir pressurization,and trapping mechanisms of storage sites through the use of numerical simulation.The results obtained indicated that the storage performance is proportionally linked to the amount of residual gas in the medium and reservoirs with low residual fluids are a better choice for storage purposes.Therefore,it would be wise to perform the secondary recovery before storage in order to have the least amount of residual gas in the medium.Although the results of this study are useful to screen depleted gas reservoirs for the storage purpose,more studies are required to confirm the finding presented in this paper. 展开更多
关键词 CO_(2)storage Dry gas reservoir Long term reservoir simulation Residual gas saturation
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部