Recently,exploration breakthroughs have been made in the Lower Cretaceous sandstone reservoirs in the Doseo Basin,but the identification of reservoir fluid property is difficult due to variable reservoir lithology,com...Recently,exploration breakthroughs have been made in the Lower Cretaceous sandstone reservoirs in the Doseo Basin,but the identification of reservoir fluid property is difficult due to variable reservoir lithology,complex oil-water contact within and faint responses of the oil zone,which causes the lower accuracy of reservoir fluid property identification with conventional mudlogging and wirelogging techniques.Applying the geochemical logging,fluorescent logging,mud logging and cutting logging technology,in combination with formation test data,this paper distinguishes the crude oil types,analyzes the logging response characteristics of oil zone after water washing,and establishes the interpretation charts and parameter standards for reservoir fluid properties.The crude oil can be divided into two types,namely viscous-heavy and thin-light,based on total hydrocarbon content and component concentration tested by mud logging,features of pyrolysis gas chromatogram and fluorescence spectroscopy.The general characteristics of oil layers experienced water washing include the decrease of total hydrocarbon content and component concentration from mud logging,the decrease of S1 and PS values from geochemical logging,the decrease of hydrocarbon abundance and absence of some light components in pyrolysis gas chromatogram,and the decrease of fluorescence area and intensity from fluorescence logging.According to crude oil types,the cross plots of S1 versus peak-baseline ratio,and the cross plots of rock wettability versus fluorescence area ratio are drawn and used to interpret reservoir fluid property.Meanwhile,the standards of reservoir fluid parameter are established combining with the parameters of PS and the parameters in above charts,and comprehensive multiparameter correlation in both vertical and horizontal ways is also performed to interpret reservoir fluid property.The application in the Doseo Basin achieved great success,improving interpretation ability of fluid property in the reservoir with complex oil-water contact,and also provided technical reference for the efficient exploration and development of similar reservoirs.展开更多
The Mesozoic-Paleozoic marine residual basin in the South Yellow Sea(SYS) is a significant deep potential hydrocarbon reservoir. However, the imaging of the deep prospecting target is quite challenging due to the spec...The Mesozoic-Paleozoic marine residual basin in the South Yellow Sea(SYS) is a significant deep potential hydrocarbon reservoir. However, the imaging of the deep prospecting target is quite challenging due to the specific seismic-geological conditions. In the Central and Wunansha Uplifts, the penetration of the seismic wavefield is limited by the shallow high-velocity layers(HVLs) and the weak reflections in the deep carbonate rocks. With the conventional marine seismic acquisition technique, the deep weak reflection is difficult to image and identify. In this paper, we could confirm through numerical simulation that the combination of multi-level air-gun array and extended cable used in the seismic acquisition is crucial for improving the imaging quality. Based on the velocity model derived from the geological interpretation, we performed two-dimensional finite difference forward modeling. The numerical simulation results show that the use of the multi-level air-gun array can enhance low-frequency energy and that the wide-angle reflection received at far offsets of the extended cable has a higher signal-to-noise ratio(SNR) and higher energy. Therefore, we have demonstrated that the unconventional wide-angle seismic acquisition technique mentioned above could overcome the difficulty in imaging the deep weak reflectors of the SYS, and it may be useful for the design of practical seismic acquisition schemes in this region.展开更多
基金funded by a project entitled exploration field evaluation and target optimization of key basins in Chad and Niger(No.2019D-4308)initiated by the scientific research and technology development project of china national petroleum corporation.
文摘Recently,exploration breakthroughs have been made in the Lower Cretaceous sandstone reservoirs in the Doseo Basin,but the identification of reservoir fluid property is difficult due to variable reservoir lithology,complex oil-water contact within and faint responses of the oil zone,which causes the lower accuracy of reservoir fluid property identification with conventional mudlogging and wirelogging techniques.Applying the geochemical logging,fluorescent logging,mud logging and cutting logging technology,in combination with formation test data,this paper distinguishes the crude oil types,analyzes the logging response characteristics of oil zone after water washing,and establishes the interpretation charts and parameter standards for reservoir fluid properties.The crude oil can be divided into two types,namely viscous-heavy and thin-light,based on total hydrocarbon content and component concentration tested by mud logging,features of pyrolysis gas chromatogram and fluorescence spectroscopy.The general characteristics of oil layers experienced water washing include the decrease of total hydrocarbon content and component concentration from mud logging,the decrease of S1 and PS values from geochemical logging,the decrease of hydrocarbon abundance and absence of some light components in pyrolysis gas chromatogram,and the decrease of fluorescence area and intensity from fluorescence logging.According to crude oil types,the cross plots of S1 versus peak-baseline ratio,and the cross plots of rock wettability versus fluorescence area ratio are drawn and used to interpret reservoir fluid property.Meanwhile,the standards of reservoir fluid parameter are established combining with the parameters of PS and the parameters in above charts,and comprehensive multiparameter correlation in both vertical and horizontal ways is also performed to interpret reservoir fluid property.The application in the Doseo Basin achieved great success,improving interpretation ability of fluid property in the reservoir with complex oil-water contact,and also provided technical reference for the efficient exploration and development of similar reservoirs.
基金supported by the National Hi-tech Research and Development Program of China (863 Program) (No. 2013AA092501)the open foundation of Key Laboratory of Marine Hydrocarbon Resources and Environmental Geology, Ministry of Land and Resources (No. MRE201303)the National Natural Science Foundation of China (Nos. 41176077, 41230318)
文摘The Mesozoic-Paleozoic marine residual basin in the South Yellow Sea(SYS) is a significant deep potential hydrocarbon reservoir. However, the imaging of the deep prospecting target is quite challenging due to the specific seismic-geological conditions. In the Central and Wunansha Uplifts, the penetration of the seismic wavefield is limited by the shallow high-velocity layers(HVLs) and the weak reflections in the deep carbonate rocks. With the conventional marine seismic acquisition technique, the deep weak reflection is difficult to image and identify. In this paper, we could confirm through numerical simulation that the combination of multi-level air-gun array and extended cable used in the seismic acquisition is crucial for improving the imaging quality. Based on the velocity model derived from the geological interpretation, we performed two-dimensional finite difference forward modeling. The numerical simulation results show that the use of the multi-level air-gun array can enhance low-frequency energy and that the wide-angle reflection received at far offsets of the extended cable has a higher signal-to-noise ratio(SNR) and higher energy. Therefore, we have demonstrated that the unconventional wide-angle seismic acquisition technique mentioned above could overcome the difficulty in imaging the deep weak reflectors of the SYS, and it may be useful for the design of practical seismic acquisition schemes in this region.