期刊文献+
共找到6,953篇文章
< 1 2 250 >
每页显示 20 50 100
Full field reservoir modeling of shale assets using advanced data-driven analytics 被引量:10
1
作者 Soodabeh Esmaili Shahab D.Mohaghegh 《Geoscience Frontiers》 SCIE CAS CSCD 2016年第1期11-20,共10页
Hydrocarbon production from shale has attracted much attention in the recent years. When applied to this prolific and hydrocarbon rich resource plays, our understanding of the complexities of the flow mechanism(sorpt... Hydrocarbon production from shale has attracted much attention in the recent years. When applied to this prolific and hydrocarbon rich resource plays, our understanding of the complexities of the flow mechanism(sorption process and flow behavior in complex fracture systems- induced or natural) leaves much to be desired. In this paper, we present and discuss a novel approach to modeling, history matching of hydrocarbon production from a Marcellus shale asset in southwestern Pennsylvania using advanced data mining, pattern recognition and machine learning technologies. In this new approach instead of imposing our understanding of the flow mechanism, the impact of multi-stage hydraulic fractures, and the production process on the reservoir model, we allow the production history, well log, completion and hydraulic fracturing data to guide our model and determine its behavior. The uniqueness of this technology is that it incorporates the so-called "hard data" directly into the reservoir model, so that the model can be used to optimize the hydraulic fracture process. The "hard data" refers to field measurements during the hydraulic fracturing process such as fluid and proppant type and amount, injection pressure and rate as well as proppant concentration. This novel approach contrasts with the current industry focus on the use of "soft data"(non-measured, interpretive data such as frac length, width,height and conductivity) in the reservoir models. The study focuses on a Marcellus shale asset that includes 135 wells with multiple pads, different landing targets, well length and reservoir properties. The full field history matching process was successfully completed using this data driven approach thus capturing the production behavior with acceptable accuracy for individual wells and for the entire asset. 展开更多
关键词 reservoir modeling Data driven reservoir modeling Top-down modeling Shale reservoir modelING SHALE
下载PDF
Subsurface analytics: Contribution of artificial intelligence and machine learning to reservoir engineering, reservoir modeling, and reservoir management 被引量:1
2
作者 MOHAGHEGH Shahab D. 《Petroleum Exploration and Development》 2020年第2期225-228,共4页
Traditional Numerical Reservoir Simulation has been contributing to the oil and gas industry for decades.The current state of this technology is the result of decades of research and development by a large number of e... Traditional Numerical Reservoir Simulation has been contributing to the oil and gas industry for decades.The current state of this technology is the result of decades of research and development by a large number of engineers and scientists.Starting in the late 1960s and early 1970s,advances in computer hardware along with development and adaptation of clever algorithms resulted in a paradigm shift in reservoir studies moving them from simplified analogs and analytical solution methods to more mathematically robust computational and numerical solution models. 展开更多
关键词 and reservoir management Contribution of artificial intelligence and machine learning to reservoir engineering Subsurface analytics reservoir modeling
下载PDF
Sarvak Formation Reservoir Modeling, in Oilfield Kuhmond (Southwestern Iran) 被引量:1
3
作者 Jafar Qomi Aveili 《Open Journal of Geology》 2016年第11期1361-1379,共20页
Sarvak formation is one of the important hydrocarbon reservoirs in the Zagros Basin that is one of the mid-Cretaceous carbonate units in Bangestan. This formation is located in the Kazhdomi Formation with the same slo... Sarvak formation is one of the important hydrocarbon reservoirs in the Zagros Basin that is one of the mid-Cretaceous carbonate units in Bangestan. This formation is located in the Kazhdomi Formation with the same slope. Geology, Kohmond field is located in the southeast of Bushehr and north and northwest of the Fars province. In this project, the geology, the tank and Petrophysics features were studied in the field with sedimentology;stratigraphy, Petrophysics, sedimentary environments and reservoir data analysis. According to studies, sedimentary environment of Sarvak in the Kohmond field is diagnosed as a ramp carbonate platform. Sarvak reservoir modeling in this field was done by using Petrelli software. The results indicate parts with high porosity, which are focused more in central and southeastern parts of the field and can contain large amounts of oil. 展开更多
关键词 Sarvak Formation reservoir modeling Oilfield Kuhmond
下载PDF
Application of Seismic Data to Reservoir Modeling of the Chegu 201 Block
4
作者 CaiYi ZhangXiangzhong ZhangXinshang 《Petroleum Science》 SCIE CAS CSCD 2005年第2期66-70,共5页
Great uncertainty exists in reservoir models built for blocks where well spacing is uneven or large. The uncertainty in reservoir models can be significantly reduced by using Coordinate Cokriging Sequential Gaussian S... Great uncertainty exists in reservoir models built for blocks where well spacing is uneven or large. The uncertainty in reservoir models can be significantly reduced by using Coordinate Cokriging Sequential Gaussian Simulation technology, in combination with the restriction of seismic characteristic data. Satisfactory reservoir parameter interpolation results, which are more accurate than those derived only from borehole data, are obtained, giving rise to a reasonable combination of widespread and dense-sampled seismic (soft data) data with borehole data (hard data). A significant effect has been made in reservoir parameter modeling in the Chegu 201 block of the Futai Oilfield by using this technology. 展开更多
关键词 reservoir modeling Cokriging Sequential Gaussian Simulation POROSITY FRACTURE
下载PDF
Static Reservoir Modeling, a Case Study from Early Cretaceous Yamama Formation, Southern Iraq
5
作者 Raghad A. Naeem Govand H. Sherwani Nadhir Al-Ansari 《Open Journal of Geology》 2022年第6期359-370,共12页
Constructing a static reservoir model or a 3D geological model is a widely used modern tool to employ subsurface information expose the setting and properties of hydrocarbon reservoirs. The current study attempts to b... Constructing a static reservoir model or a 3D geological model is a widely used modern tool to employ subsurface information expose the setting and properties of hydrocarbon reservoirs. The current study attempts to build a 3D reservoir model of the Yamama Formation (an important oil reservoir in Southern Iraq), from digital logs data and drilling information. This would lead to a better understanding of the relationships between different reservoir elements, then expose many characteristics of the reservoir, such as the facies distribution and petrophysical properties. The data of the Yamama Formation (Early Cretaceous Carbonates) were taken from four wells of Gharraf Oilfield, Southern Iraq (GA-1, GA-2, GA-3, and GA-4). The adopted modeling approach consists of a series of steps starting with a preliminary analysis of data, followed by interpretation of these data, and terminated by geostatistical methods for building the structural model. The modeling was assisted by defining the top of each layer detected by wireline logs and final well reports of each studied well. The results of the study encompass four microfacies distributed between Inner Ramp and Mid Ramp environments. The followed 3D geological modeling scheme was capable to visualize the distribution of petrophysical properties, and the classification of Yamama Formation into several layers or reservoir units (Y1 to Y5), and thirteen subdivisions (minor units). The model could also define the places where effective porosity was enhanced. The process of Pillar Gridding, a step within the modeling, showed that the Yamama Formation is composed of two domes. The constructed model was helpful, based on the evaluation of petrophysical parameters, then to point out the most important reservoir zone (Zone Y3_top) that has Effective Porosity of (13.6%) and water saturation of around (10.6%). 展开更多
关键词 reservoir modeling PETREL CRETACEOUS Yamama Formation Southern Iraq
下载PDF
Fractured reservoir modeling by discrete fracture network and seismic modeling in the Tarim Basin,China 被引量:4
6
作者 Sam Zandong Sun Zhou Xinyuan +3 位作者 Yang Haijun Wang Yueying WangDi Liu Zhishui 《Petroleum Science》 SCIE CAS CSCD 2011年第4期433-445,共13页
Fractured reservoirs are an important target for oil and gas exploration in the Tarim Basin and the prediction of this type of reservoir is challenging.Due to the complicated fracture system in the Tarim Basin,the con... Fractured reservoirs are an important target for oil and gas exploration in the Tarim Basin and the prediction of this type of reservoir is challenging.Due to the complicated fracture system in the Tarim Basin,the conventional AVO inversion method based on HTI theory to predict fracture development will result in some errors.Thus,an integrated research concept for fractured reservoir prediction is put forward in this paper.Seismic modeling plays a bridging role in this concept,and the establishment of an anisotropic fracture model by Discrete Fracture Network (DFN) is the key part.Because the fracture system in the Tarim Basin shows complex anisotropic characteristics,it is vital to build an effective anisotropic model.Based on geological,well logging and seismic data,an effective anisotropic model of complex fracture systems can be set up with the DFN method.The effective elastic coefficients,and the input data for seismic modeling can be calculated.Then seismic modeling based on this model is performed,and the seismic response characteristics are analyzed.The modeling results can be used in the following AVO inversion for fracture detection. 展开更多
关键词 Fractured reservoir Discrete Fracture Network (DFN) equivalent medium seismic modeling azimuth-angle gathers
下载PDF
Geostatistical seismic inversion and 3D modelling of metric flow units,porosity and permeability in Brazilian presalt reservoir 被引量:1
7
作者 Rodrigo Penna Wagner Moreira Lupinacci 《Petroleum Science》 SCIE EI CAS CSCD 2024年第3期1699-1718,共20页
Flow units(FU)rock typing is a common technique for characterizing reservoir flow behavior,producing reliable porosity and permeability estimation even in complex geological settings.However,the lateral extrapolation ... Flow units(FU)rock typing is a common technique for characterizing reservoir flow behavior,producing reliable porosity and permeability estimation even in complex geological settings.However,the lateral extrapolation of FU away from the well into the whole reservoir grid is commonly a difficult task and using the seismic data as constraints is rarely a subject of study.This paper proposes a workflow to generate numerous possible 3D volumes of flow units,porosity and permeability below the seismic resolution limit,respecting the available seismic data at larger scales.The methodology is used in the Mero Field,a Brazilian presalt carbonate reservoir located in the Santos Basin,who presents a complex and heterogenic geological setting with different sedimentological processes and diagenetic history.We generated metric flow units using the conventional core analysis and transposed to the well log data.Then,given a Markov chain Monte Carlo algorithm,the seismic data and the well log statistics,we simulated acoustic impedance,decametric flow units(DFU),metric flow units(MFU),porosity and permeability volumes in the metric scale.The aim is to estimate a minimum amount of MFU able to calculate realistic scenarios porosity and permeability scenarios,without losing the seismic lateral control.In other words,every porosity and permeability volume simulated produces a synthetic seismic that match the real seismic of the area,even in the metric scale.The achieved 3D results represent a high-resolution fluid flow reservoir modelling considering the lateral control of the seismic during the process and can be directly incorporated in the dynamic characterization workflow. 展开更多
关键词 Flowunits Geostatistical inversion Presalt reservoir 3D reservoir modelling Petrophysical modelling
下载PDF
The Classification and Model of Coalbed Methane Reservoirs 被引量:16
8
作者 SUXianbo LINXiaoying +1 位作者 SONGYan ZHAOMengjun 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2004年第3期662-666,共5页
Coalbed methane has been explored in many basins worldwide for 30 years, and has been developed commercially in some of the basins. Many researchers have described the characteristics of coalbed methane geology and te... Coalbed methane has been explored in many basins worldwide for 30 years, and has been developed commercially in some of the basins. Many researchers have described the characteristics of coalbed methane geology and technology systematically. According to these investigations, a coalbed methane reservoir can be defined: 'a coal seam that contains some coalbed methane and is isolated from other fluid units is called a coalbed methane reservoir'. On the basis of anatomization, analysis, and comparison of the typical coalbed methane reservoirs, coalbed methane reservoirs can be divided into two classes: the hydrodynamic sealing coalbed methane reservoirs and the self-sealing coalbed methane reservoirs. The former can be further divided into two sub-classes: the hydrodynamic capping coalbed methane reservoirs, which can be divided into five types and the hydrodynamic driving coalbed methane reservoirs, which can be divided into three types. The latter can be divided into three types. Currently, hydrodynamic sealing reservoirs are the main target for coalbed methane exploration and development; self-sealing reservoirs are unsuitable for coalbed methane exploration and development, but they are closely related with coal mine gas hazards. Finally, a model for hydrodynamic sealing coalbed methane reservoirs is established. 展开更多
关键词 coalbed methane reservoir CLASSIFICATION reservoir model HYDRODYNAMICS reservoir boundary
下载PDF
Three-Dimensional Modelling of a Multi-Layer Sandstone Reservoir: the Sebei Gas Field, China 被引量:6
9
作者 OU Chenghua WANG Xiaolu +1 位作者 LI Chaochun HE Yan 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2016年第1期209-221,共13页
Multi-layer sandstone reservoirs occur globally and are currently in international production. The 3D characteristics of these reservoirs are too complicated to be accurately delineated by general structural-facies-re... Multi-layer sandstone reservoirs occur globally and are currently in international production. The 3D characteristics of these reservoirs are too complicated to be accurately delineated by general structural-facies-reservoir modelling. In view of the special geological features, such as the vertical architecture of sandstone and mudstone interbeds, the lateral stable sedimentation and the strong heterogeneity of reservoir poroperm and fluid distribution, we developed a new three-stage and six-phase procedure for 3D characterization of multi-layer sandstone reservoirs. The procedure comprises two-phase structural modelling, two-phase facies modelling and modelling of two types of reservoir properties. Using this procedure, we established models of the formation structure, sand body structure and microfacies, reservoir facies and properties including porosity, permeability and gas saturation and provided a 3D fine-scale, systematic characterization of the Sebei multi-layer sandstone gas field, China. This new procedure, validated by the Sebei gas field, can be applied to characterize similar multi-layer sandstone reservoirs. 展开更多
关键词 multi-layer sandstone reservoir 3D characterization PROCEDURE Sebei gas field geological model reservoir modelling
下载PDF
Formation conditions and reservoir-forming models of the Ordovician buried hill reservoirs in the Jizhong depression
10
作者 ZHANG Ruifeng TIAN Jianzhang +6 位作者 HUANG Yuanxin TIAN Ran REN Yi BIAN Yingying WANG Yuanjie CHEN Ling LU Shan 《地学前缘》 EI CAS CSCD 北大核心 2023年第1期229-241,共13页
The buried hill in the Jizhong depression contains abundant petroleum reserves and are important production areas.The Ordovician buried hill has restricted the discovery of new oil and gas exploration targets because ... The buried hill in the Jizhong depression contains abundant petroleum reserves and are important production areas.The Ordovician buried hill has restricted the discovery of new oil and gas exploration targets because of its strong reservoir heterogeneity and complex reservoir-controlling factors.Based on a large volume of core,thin section,logging,seismic,and geochemical data and numerous geological analyses,the reservoir-forming conditions and modes were systematically analyzed to guide the exploration and achieve important breakthroughs in the Yangshuiwu and Wen an slope buried hills.The study revealed that three sets of source rocks of the third and fourth members of the Shahejie Formation from the Paleogene and Carboniferous-Permian were developed in the Jizhong depression,providing sufficient material basis for the formation of buried hill oil and gas reservoirs.The reservoir control mechanism involving the three major factors of“cloud-karst-fault”was clarified,and karst cave,fracture fissure-pore,and cloud pore type reservoir models were established,thereby expanding the exploration potential.Controlled by the superposition of multi-stage tectonic processes during the Indosinian,Yanshanian,and Himalayan,two genetic buried hill trap types of uplift-depression and depression-uplift were formed.Based on the analysis of reservoir-forming factors of the Ordovician buried hill,three buried hill oil and gas reservoir-forming models were identified:low-level tectonic-lithologic composite quasi-layered buried hill,medium-level paleo-storage paleo-block buried hill,and high-level paleo-storage new-block buried hill.Comprehensive evaluations indicate that the reservoir-forming conditions of the low-level tectonic-lithologic composite quasi-layered buried hill in the northern portion of the Jizhong depression are the most favorable and that the Sicundian and Xinzhen buried hills are favorable areas for future exploration. 展开更多
关键词 Jizhong depression Yangshuiwu ORDOVICIAN reservoir type reservoir model
下载PDF
Petroleum system analysis-conjoined 3D-static reservoir modeling in a 3-way and 4-way dip closure setting: Insights into petroleum geology of fluvio-marine deposits at BED-2 Field (Western Desert, Egypt)
11
作者 Mohammad A.Abdelwahhab Emad H.Ali Nabil A.Abdelhafez 《Petroleum》 EI CSCD 2023年第1期8-32,共25页
Imperfect determination of petroleum system processes coincidence,entrapment and charge timing,along with reservoir heterogeneity can considerably cause high risks throughout exploration and development phases of petr... Imperfect determination of petroleum system processes coincidence,entrapment and charge timing,along with reservoir heterogeneity can considerably cause high risks throughout exploration and development phases of petroleum.Therefore,a complete subsurface visualization of the petroleum system nature,elements and processes,is badly required.To this end,we corroborated,in this study,static reservoir modeling with petroleum system analysis workflows,to better characterize the Cenomanian fluvio-marine reservoir,sandstones of Bahariya Formation,at Bed-2 Field,Abu Gharadig Basin(Western Desert,Egypt).We used dataset of 2D seismic profiles and well logs of eight wells.The geometry and property of the reservoir were acquired performing static reservoir geocellular modeling approach.The geohistory,timing of charge,migration pathways,and accumulation sites were identified performing 1D and 2D basin modeling approaches.Combining both approaches was aimed at identifying new petroleum prospect areas,and estimating the hydrocarbon volumes,that are the need for such poorly-defined petroleum systems area.As indicated by the constructed,robust,reservoir and 1D-2D basin models,an additional hydrocarbon prospect,to the north central part of Bed-2 Field,is proposed to be drilled during the further oilfield development phases of the area.This prospect has all features that adequately lead to reliable inferences regarding the ultimate petroleum potential of the area. 展开更多
关键词 Petroleum system analysis 3D-static reservoir modeling Volumetric assessment Prospect identification Bahariya Formation Western Desert of Egypt
原文传递
3D static modeling and sequence stratigraphy using well logs and seismic data:An example of Abu Roash G member in Bahga oilfield
12
作者 Mohamed Reda Mohamed Fathy +2 位作者 Mohamed Mosaad Fahad Alshehri Mohamed S.Ahmed 《Energy Geoscience》 EI 2024年第3期362-377,共16页
This research uses both three-dimensional(3D)modeling and geologic well control to piece back together the architectural parts of the Late Cretaceous formations.The goal is to figure out the sizes,directions,locations... This research uses both three-dimensional(3D)modeling and geologic well control to piece back together the architectural parts of the Late Cretaceous formations.The goal is to figure out the sizes,directions,locations,and controls of the layers of the fluvial sandstone reservoirs.Sequence stratigraphy is essential for 3D reservoir modeling and petroleum geology understanding in the Bahga oilfield.The purpose of this work is to create a static model that shows the layers and facies distribution in the reservoir interval.We will use data from nine well logs and 22 seismic lines calibrated by the Abu Roash G Member reservoir core intervals to accomplish this.The petrophysical study discovered three parts in the Abu Roash G Member reservoir rock:channel fill that is affected by tides,channel fill that is dominated by tides(intertidal sands),and channel top with lenticular bedded sandstone.The model's findings point to the existence of an NNW-oriented sand body,which could be a prime location to produce hydrocarbons.The original oil in place(OOIP)is about 3,438,279 Stock Tank Barrels(STB),and the oil reserve reaches up to 1,031,484(STB).Sequence stratigraphic analysis using seismic and well log information(SB)reveals that the Upper Cretaceous AR/G reservoir of the Bahga field is characterized by third-and fourth-order stratigraphic sequences,which are constrained by three Maximum Flooding Surfaces(MFS)and two Sequence Boundaries.The integration of the derived geological model and sequence stratigraphic results can lower future extraction risk by identifying the locations and trends of the geologic facies with the necessary petrophysical properties for the hydrocarbon accumulations. 展开更多
关键词 Three-dimensional reservoir modeling Sequence stratigraphy reservoir characterization Abu Roash reservoir Abu Gharadig Basin
下载PDF
A unified model for the formation and distribution of both conventional and unconventional hydrocarbon reservoirs 被引量:18
13
作者 Xiongqi Pang Chengzao Jia +8 位作者 Junqing Chen Maowen Li Wenyang Wang Qinhong Hu Yingchun Guo Zhangxin Chen Junwen Peng Keyu Liu Keliu Wu 《Geoscience Frontiers》 SCIE CAS CSCD 2021年第2期695-711,共17页
The discovery and large-scale exploration of unconventional oil/gas resources since 1980s have been considered as the most important advancement in the history of petroleum geology;that has not only changed the balanc... The discovery and large-scale exploration of unconventional oil/gas resources since 1980s have been considered as the most important advancement in the history of petroleum geology;that has not only changed the balance of supply and demand in the global energy market,but also improved our understanding of the formation mechanisms and distribution characteristics of oil/gas reservoirs.However,what is the difference of conventional and unconventional resources and why they always related to each other in petroliferous basins is not clear.As the differences and correlations between unconventional and conventional resources are complex challenging issues and very critical for resources assessment and hydrocarbon exploration,this paper focused on studying the relationship of formations and distributions among different oil/gas reservoirs.Drilling results of 12,237 exploratory wells in 6 representative petroliferous basins of China and distribution characteristics for 52,926 oil/gas accumulations over the world were applied to clarify the formation conditions and genetic relations of different oil/gas reservoirs in a petroliferous basin,and then to establish a unified model to address the differences and correlations of conventional and unconventional reservoirs.In this model,conventional reservoirs formed in free hydrocarbon dynamic field with high porosity and permeability located above the boundary of hydrocarbon buoyancy-driven accumulation depth limit.Unconventional tight reservoirs formed in confined hydrocarbon dynamic field with low porosity and permeability located between hydrocarbon buoyancy-driven accumulation depth limit and hydrocarbon accumulation depth limit.Shale oil/gas reservoirs formed in the bound hydrocarbon dynamic field with low porosity and ultra-low permeability within the source rock layers.More than 75%of proved reserves around the world are discovered in the free hydrocarbon dynamic field,which is estimated to contain only 10%of originally generated hydrocarbons.Most of undiscovered resources distributed in the confined hydrocarbon dynamic field and the bound hydrocarbon dynamic field,which contains 90%of original generated hydrocarbons,implying a reasonable and promising area for future hydrocarbon explorations.The buried depths of hydrocarbon dynamic fields become shallow with the increase of heat flow,and the remaining oil/gas resources mainly exist in the deep area of“cold basin”with low geothermal gradient.Lithology changing in the hydrocarbon dynamic field causes local anomalies in the oil/gas dynamic mechanism,leading to the local formation of unconventional hydrocarbon reservoirs in the free hydrocarbon dynamic field or the occurrence of oil/gas enrichment sweet points with high porosity and permeability in the confined hydrocarbon dynamic field.The tectonic movements destroy the medium conditions and oil/gas components,which leads to the transformation of conventional oil/gas reservoirs formed in free hydrocarbon dynamic field to unconventional ones or unconventional ones formed in confined and bound hydrocarbon dynamic fields to conventional ones. 展开更多
关键词 Fossil fuels Hydrocarbon resources Unified model of reservoirs formation Hydrocarbon reservoirs Hydrocarbon accumulation Hydrocarbon dynamic field
下载PDF
A vertically integrated eutrophication model and its application to a river-style reservoir-Fuchunjiang,China 被引量:6
14
作者 WU Tingfeng LUOLiancong +3 位作者 QIN Boqiang CUI Guangbai YUZuoming YAO Zhiming 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2009年第3期319-327,共9页
Based on a 2-D hydrodynamic model, a vertically integrated eutrophication model was developed. The physical sub-model can be used for calculation of water density at different depths, and the water quality sub-model w... Based on a 2-D hydrodynamic model, a vertically integrated eutrophication model was developed. The physical sub-model can be used for calculation of water density at different depths, and the water quality sub-model was used for calculation of algal growth. The cohesive and non-cohesive sediments were simulated separately with different methods. The light extinction coefficient used in the underwater light regime sub-model was linearly related to the sum of sediment and phytoplankton biomass. Some components less important to the model were simplified to improve practicability and calculation efficiency. Using field data from Fuchunjiang Reservoir, we calculated the sensitivity of ecological parameters included in this model and validated the model. The results of sensitivity analysis showed that the parameters strongly influenced the phytoplankton biomass, including phytoplankton maximum growth rate, respiration rate, non-predatory mortality rate, settling rate, zooplankton maximum filtration rate, specific extinction coefficient for suspended solids and sediment oxygen demand rate. The model was calibrated by adjusting these parameters. Total chlorophyll α (chl-α) concentrations at different layers in the water column were reproduced very well by the model simulations. The simulated chl-α values were positively correlated to the measured values with Pearson correlation coefficient of 0.92. The mean difference between measured and simulated chl-α concentrations was 12% of the measured chl-α concentration. Measured and simulated DO concentrations were also positively correlated (r = 0.74) and the mean difference was 4% of measured DO concentrations. The successful validation of model indicated that it would be very useful in water quality management and algal bloom prediction in Fuchunjiang Reservoir and a good tool for water quality regulation of other fiver-style reservoirs. 展开更多
关键词 fiver-style reservoir EUTROPHICATION numerical model Fuchunjiang reservoir
下载PDF
The tectonic fracture modeling of an ultra-low permeability sandstone reservoir based on an outcrop analogy: A case study in the Wangyao Oilfield of Ordos Basin, China 被引量:7
15
作者 Zhao Xiaoming Liu Li +2 位作者 Hu Jialiang Zhou Xiaojun Li Min 《Petroleum Science》 SCIE CAS CSCD 2014年第3期363-375,共13页
Due to inherent limits of data acquisition and geophysical data resolution, there are large uncertainties in the characterization of subsurface fractures. However, outcrop analogies can provide qualitative and quantit... Due to inherent limits of data acquisition and geophysical data resolution, there are large uncertainties in the characterization of subsurface fractures. However, outcrop analogies can provide qualitative and quantitative information on a large number of fractures, based on which the accuracy of subsurface fracture characterization can be improved. Here we take the tectonic fracture modeling of an ultra-low permeability sandstone reservoir based on an outcrop analogy, a case study of the Chang6t~ Formation of the Upper Triassic Yanchang Group of the Wangyao Oilfield in the Ordos Basin of China. An outcrop at the edge of the basin is a suitable analog for the reservoir, but the prerequisite is that they must have equivalent previous stress fields, similar final structural characteristics, relative timing and an identical depositional environment and diagenesis. The relationship among fracture density, rock type and bed thickness based on the outcrop is one of the most important fracture distribution models, and can be used to interpret fracture density in individual wells quantitatively. Fracture orientation, dip, geometry and scale, also should be described and measured in the outcrop, and can be used together with structure restoration and single well fracture density interpretation to guide fracture intensity prediction on bed surfaces and to constrain the construction of the 3D fracture geometry model of the subsurface reservoir. The application of the above principles shows the outcrop-based tectonic fracture models of the target ultra-low permeability sandstone reservoir are consistent with fractures inferred from microseismic interpretation and tracer tests. This illustrated that the fracture modeling based on the outcrop analogy is reliable and can reduce the uncertainty in stochastic fracture modeling. 展开更多
关键词 Ultra-low permeability sandstone tectonic fracture modeling outcrop analog subsurface reservoir 3D modeling
下载PDF
Reservoir Stochastic Modeling Constrained by Quantitative Geological Conceptual Patterns 被引量:4
16
作者 Wu Shenghe Zhang Yiwei Jan Einar Ringas 《Petroleum Science》 SCIE CAS CSCD 2006年第1期27-33,共7页
This paper discusses the principles of geologic constraints on reservoir stochastic modeling. By using the system science theory, two kinds of uncertainties, including random uncertainty and fuzzy uncertainty, are rec... This paper discusses the principles of geologic constraints on reservoir stochastic modeling. By using the system science theory, two kinds of uncertainties, including random uncertainty and fuzzy uncertainty, are recognized. In order to improve the precision of stochastic modeling and reduce the uncertainty in realization, the fuzzy uncertainty should be stressed, and the "geological genesis-controlled modeling" is conducted under the guidance of a quantitative geological pattern. An example of the Pingqiao horizontal-well division of the Ansai Oilfield in the Ordos Basin is taken to expound the method of stochastic modeling. 展开更多
关键词 reservoir stochastic modeling geological constraints sedimentary facies
下载PDF
Impact of Reservoir Properties on the Production of the Mannville Coal Measures, South Central Alberta from a Numerical Modelling Parametric Analysis 被引量:2
17
作者 Amanda M. M. Bustin Robert Marc Bustin 《Engineering(科研)》 2017年第3期291-327,共37页
Numerical simulations are used to investigate the impact of intrinsic and extrinsic reservoir properties on the production from coal and organic rich lithologies in the Lower Cretaceous Mannville coal measures of the ... Numerical simulations are used to investigate the impact of intrinsic and extrinsic reservoir properties on the production from coal and organic rich lithologies in the Lower Cretaceous Mannville coal measures of the Western Canadian Sedimentary Basin. The coal measures are complex reservoirs in which production is from horizontal wells drilled and completed in the thickest coal seam in the succession (1 m versus 3 m), which has production and pressure support from thinner coals in the adjacent stratigraphy and from organic-rich shales interbedded and over and underlying the coal seams. Numerical models provide insight as to the relative importance of the myriad of parameters that may impact production that are not self-evident or intuitive in complex coal measures. 展开更多
关键词 Coal BED METHANE Gas SHALES Parametric Analysis reservoir modelling UNCONVENTIONAL reservoirS
下载PDF
A Technical Review on Shale Gas Production and Unconventional Reservoirs Modeling 被引量:2
18
作者 Liang Wang Armando Torres +3 位作者 Li Xiang Xu Fei Akhona Naido Wensi Wu 《Natural Resources》 2015年第3期141-151,共11页
During the past several years, natural gas production from shale gas is increased and has adsorbed much attention worldwide. The reason behind this is because of advances gained in shale gas recovery techniques from t... During the past several years, natural gas production from shale gas is increased and has adsorbed much attention worldwide. The reason behind this is because of advances gained in shale gas recovery techniques from this ultra-low permeability/porosity rock. These techniques are considered the horizontal drilling of the length of 3000 to 5000 ft long and conducting multi-stage hydraulic fracturing along the horizontal portion of the wells. The successful application of above has also driven down the gas prices worldwide and also culminated the security of gas supply for the upcoming decades. This paper is a technical literature review of shale gas production and modeling for future performance evaluation that identifies the current challenges in different stages. Several different and complex physics of gas flow in such a low permeability formation is also explained and the state of the art of the challenges encountered in the modeling process is also explained. As such, gas desorption phenomena, non-Darcy Flow, gas Klinkenberg effect are investigated for different shale formations in the US. This technical review also takes a look over the hydraulic fracturing effects on the economics of shale gas wells due to its straight tie to the production from shale and also the overall recovery from such reservoirs. 展开更多
关键词 UNCONVENTIONAL SHALE Gas reservoirS modelING and Simulation PRODUCTION FORECAST
下载PDF
Comprehensive Evaluation Model of Reservoir Operation Based on Improved Set Pair Analysis 被引量:4
19
作者 任炳昱 孙宜超 +2 位作者 周正印 程正飞 胡兴富 《Transactions of Tianjin University》 EI CAS 2013年第1期25-28,共4页
A comprehensive evaluation model based on improved set pair analysis is established. Considering the complexity in decision-making process, the model combines the certainties and uncertainties in the schemes, i.e., id... A comprehensive evaluation model based on improved set pair analysis is established. Considering the complexity in decision-making process, the model combines the certainties and uncertainties in the schemes, i.e., identical degree, different degree and opposite degree. The relations among different schemes are studied, and the traditional way of solving uncertainty problem is improved. By using the gray correlation to determine the difference degree, the problem of less evaluation indexes and inapparent linear relationship is solved. The difference between the evaluation parameters is smaller in both the fuzzy comprehensive evaluation model and fuzzy matter-element method, and the dipartite degree of the evaluation result is unobvious. However, the difference between each integrated connection degree is distinct in the improved set pair analysis. Results show that the proposed method is feasible and it obtains better effects than the fuzzy comprehensive evaluation method and fuzzy matter-element method. 展开更多
关键词 set pair analysis comprehensive evaluation model gray correlation reservoir operation
下载PDF
A Comprehensive Model for Evaluating Coalbed Methane Reservoirs in China 被引量:20
20
作者 YAO Yanbin LIU Dameng TANG Dazhen HUANG Wenhui TANG Shuheng CHE Yao 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2008年第6期1253-1270,共18页
Coalbed methane reservoir (CBMR) evaluation is important for choosing the prospective target area for coalbed methane exploration and production. This study aims at identifying the characteristic parameters and meth... Coalbed methane reservoir (CBMR) evaluation is important for choosing the prospective target area for coalbed methane exploration and production. This study aims at identifying the characteristic parameters and methods to evaluate CBMR. Based on the geological surveys, laboratory measurements and field works, a four-level analytic hierarchy process (AHP) model for CBMR evaluation is proposed. In this model, different weights are prioritized and assigned on the basis of three main criteria (including reservoir physical property, storage capacity and geological characteristics), 15 sub-criteria, and 18 technical alternatives; the later of which are discussed in detail. The model was applied to evaluate the CBMR of the Permo-Carboniferous coals in the Qinshui Basin, North China. This GIS-based fuzzy AHP comprehensive model can be used for the evaluation of CBMR of medium-high rank (mean maximum vitrinite reflectance 〉0.5 %) coal districts in China. 展开更多
关键词 coalbed methane reservoir reservoir evaluation reservoir characterization comprehensive model Fuzzy Hierarchy Process Approach (FAHP)
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部