Essentially the main intention of this paper was to test the formula for the Dirac CPV phase and see if it can reflect the results of experimental measurements of neutrino parameters. By knowing the mathematical formu...Essentially the main intention of this paper was to test the formula for the Dirac CPV phase and see if it can reflect the results of experimental measurements of neutrino parameters. By knowing the mathematical formula for the Dirac CPV phase, a connection was established with some of the residual symmetry groups, which made it possible to develop a procedure for directly determining the range in which the numerical value for the Dirac CPV phase could be found. In this sense, two different sources of information containing measured data for neutrinos were used for the corresponding calculations, and then a comparative overview of the calculated results was presented. It is particularly emphasized that the formula for the Dirac CPV phase does not depend on the mixing angles that are incorporated into the PMNS matrix, but only on the ratio between the corresponding squares of the neutrino mass difference. All the numerous results obtained from the corresponding calculations for the Dirac CPV phase point to the justified introduction of the theory that is related to three neutrinos, and thus the agreement of our results with the STEREO experiment is justified, so that the hypothesis of the possible existence of a sterile neutrino in nature should be excluded.展开更多
文摘Essentially the main intention of this paper was to test the formula for the Dirac CPV phase and see if it can reflect the results of experimental measurements of neutrino parameters. By knowing the mathematical formula for the Dirac CPV phase, a connection was established with some of the residual symmetry groups, which made it possible to develop a procedure for directly determining the range in which the numerical value for the Dirac CPV phase could be found. In this sense, two different sources of information containing measured data for neutrinos were used for the corresponding calculations, and then a comparative overview of the calculated results was presented. It is particularly emphasized that the formula for the Dirac CPV phase does not depend on the mixing angles that are incorporated into the PMNS matrix, but only on the ratio between the corresponding squares of the neutrino mass difference. All the numerous results obtained from the corresponding calculations for the Dirac CPV phase point to the justified introduction of the theory that is related to three neutrinos, and thus the agreement of our results with the STEREO experiment is justified, so that the hypothesis of the possible existence of a sterile neutrino in nature should be excluded.