An academic geophysical research as a regional gravity survey was made during1994 in the Western White Nile to infer the shallow crustal structures in the area. The result ofthe survey was compiled as a Bouguer anomal...An academic geophysical research as a regional gravity survey was made during1994 in the Western White Nile to infer the shallow crustal structures in the area. The result ofthe survey was compiled as a Bouguer anomaly map with a contour interval of 2 X 10^(-5)m/s^2. It isfound that the negative residual anomalies are related to the Upper Cretaceous sediments (NubianSandstone Formation) filling all depressions in the Basement complex surface while the positiveresidual anomalies are attributed to the relatively shallow or outcropping Basement rocks and thesteep gravity gradients are resulting from the sharp contacts between the sedimentary infill and theBasement rocks. To define the geological structures in the area, 9 profiles were studied. For eachof the profiles, measured and computed Bouguer gravity anomalies, crustal density model, subsurfacegeology evaluation were performed. A G-model computer program was applied in the gravity modeling,which is based on the line-integral method of gravity computation. A geological/structural map wasproposed showing inferred sedimentary basins, faulting troughs and uplifted Basement block andtectonic trends. The basins are believed to be fault-controlled which developed by extensionaltectonics (pull-apart mechanism). As for the mechanism and cause of faulting, the area is consideredas a part of the Central Sudan rift system which had been subjected to several tectonic eventssince Early Cambrian to Tertiary times which resulted in the formation of several fracture systemsassociated with block subsidence, rifting and basin formation.展开更多
Spreading rate is a primary factor of mantle melting and tectonic behavior of the global mid-ocean ridges. The spreading rate of the Gakkel ridge decreases gradually from west to east. However, the Gakkel ridge can be...Spreading rate is a primary factor of mantle melting and tectonic behavior of the global mid-ocean ridges. The spreading rate of the Gakkel ridge decreases gradually from west to east. However, the Gakkel ridge can be divided into four thick-and-thin zones with varying crustal thicknesses along ridge axis. This phenomenon indicates that mantle melting of the Gakkel ridge is not a simple function of spreading rate. Mantle temperature, water content, mantle composition, and other factors are important in crustal accretion processes. Based on gravity-derived crustal thickness and wet melting model, we estimate that the mantle potential temperatures of the four zones are 1 270, 1 220, 1 280, and 1 280℃ (assuming that mantle water content equals to global average value), with corresponding mantle water contents of 210, 0, 340, and 280 mg/kg (assuming that mantle potential temperature is 1 260℃), respectivly. The western thinned crust zone is best modeled with low mantle temperature, whereas the other zones are mainly controlled by the enhanced conduction caused by the slower spreading rate. Along the Gakkel ridge, the crustal thickness is consistent with rock samples types. Predominated serpentinized peridotite and basalt are found in the area with crustal thickness 〈1.5 km and 〉2.5 km, respectively. The rock samples are including from basalt to peridotite in the area with crustal thickness between 1.5 and 2.5 km. Based on this consistency, the traditional magmatic accretion zone accounted for only 44% and amagmatic accretion accounted for 29% of the Gakkel ridge. The amagmatic accretion is a significant characteristic of the ultra-slow spreading ridge.展开更多
In this paper, we analyze lithospheric density distribution of China and surrounding regions on the basis of 30' × 30' gravity data and 1°×1 °P-wave velodty data, Firstly, we used the empirical e...In this paper, we analyze lithospheric density distribution of China and surrounding regions on the basis of 30' × 30' gravity data and 1°×1 °P-wave velodty data, Firstly, we used the empirical equation be- tween the density and the P-wave velocity difference as the base of the initial model of the Asian lithospheric density. Secondly, we calculated the gravity anomaly, caused by the Moho discontinuity and the sedimentary layer discontinuity, by the Parker formula. Thirdly, the gravity anomaly of the spherical harmonics with 2 40 order for the anomalous body below the lithosphere is calculated based on the model of EGM96. Finally, by using Algebra Reconstruction Techniques (ART), the inversion of 30' ~ 30' residual lithospheric Bouguer gravity anomaly caused by the lithosphere yields a rather detailed struc- tural model. The results show that the lithospheric density distribution of China and surrounding regions has a certain connection with the tectonic structure. The density is relatively high in the Philippine Sea plate, Japan Sea, the Indian plate, the Kazakhstan shield and the Western Siberia plain, whereas the Tibetan Plateau has low-density characteristics. The minimum value of density lies in the north of Philippines, in the Taiwan province and in the Ryukyu island arc.展开更多
In regions of complex geology and tectonic assembly, strong motion seismic arrival time records can be used to test the plausibility of existing hypothesis about the origin of lithological and tectonic features and ho...In regions of complex geology and tectonic assembly, strong motion seismic arrival time records can be used to test the plausibility of existing hypothesis about the origin of lithological and tectonic features and how they are related in space and time. In this study we use differential travel time residuals at some strong motion accelerographic stations in the Medellin-Aburra Valley, in the northern Central Cordillera of the Colombian Andes, to discuss some aspects of the geological configuration. We based our work on the hypothesis that the differences between seismic travel time residuals among pairs of stations are a function of the differences in the surface geology and the near-surface upper crustal configuration. Our results are consistent with the volcanic rocks of the Quebradagrande Complex being less mafic, more weathered or more tectonically affected than previously thought, with the presence of a relatively thin dunite body on top of the metamorphic basement, and with a large lateral heterogeneity in the mainly mafic San Diego Stock.展开更多
文摘An academic geophysical research as a regional gravity survey was made during1994 in the Western White Nile to infer the shallow crustal structures in the area. The result ofthe survey was compiled as a Bouguer anomaly map with a contour interval of 2 X 10^(-5)m/s^2. It isfound that the negative residual anomalies are related to the Upper Cretaceous sediments (NubianSandstone Formation) filling all depressions in the Basement complex surface while the positiveresidual anomalies are attributed to the relatively shallow or outcropping Basement rocks and thesteep gravity gradients are resulting from the sharp contacts between the sedimentary infill and theBasement rocks. To define the geological structures in the area, 9 profiles were studied. For eachof the profiles, measured and computed Bouguer gravity anomalies, crustal density model, subsurfacegeology evaluation were performed. A G-model computer program was applied in the gravity modeling,which is based on the line-integral method of gravity computation. A geological/structural map wasproposed showing inferred sedimentary basins, faulting troughs and uplifted Basement block andtectonic trends. The basins are believed to be fault-controlled which developed by extensionaltectonics (pull-apart mechanism). As for the mechanism and cause of faulting, the area is consideredas a part of the Central Sudan rift system which had been subjected to several tectonic eventssince Early Cambrian to Tertiary times which resulted in the formation of several fracture systemsassociated with block subsidence, rifting and basin formation.
基金Chinese Polar Environment Comprehensive Investigation and Assessment Programmes under contract Nos CHINARE2013-03-03 and 2013-04-03the National Natural Science Foundation of China under contract No.41106049
文摘Spreading rate is a primary factor of mantle melting and tectonic behavior of the global mid-ocean ridges. The spreading rate of the Gakkel ridge decreases gradually from west to east. However, the Gakkel ridge can be divided into four thick-and-thin zones with varying crustal thicknesses along ridge axis. This phenomenon indicates that mantle melting of the Gakkel ridge is not a simple function of spreading rate. Mantle temperature, water content, mantle composition, and other factors are important in crustal accretion processes. Based on gravity-derived crustal thickness and wet melting model, we estimate that the mantle potential temperatures of the four zones are 1 270, 1 220, 1 280, and 1 280℃ (assuming that mantle water content equals to global average value), with corresponding mantle water contents of 210, 0, 340, and 280 mg/kg (assuming that mantle potential temperature is 1 260℃), respectivly. The western thinned crust zone is best modeled with low mantle temperature, whereas the other zones are mainly controlled by the enhanced conduction caused by the slower spreading rate. Along the Gakkel ridge, the crustal thickness is consistent with rock samples types. Predominated serpentinized peridotite and basalt are found in the area with crustal thickness 〈1.5 km and 〉2.5 km, respectively. The rock samples are including from basalt to peridotite in the area with crustal thickness between 1.5 and 2.5 km. Based on this consistency, the traditional magmatic accretion zone accounted for only 44% and amagmatic accretion accounted for 29% of the Gakkel ridge. The amagmatic accretion is a significant characteristic of the ultra-slow spreading ridge.
基金supported by Project SinoProbe-02: Experiment and Integration of Deep Probe Techniques in ChinaNational Natural Science Foundation of China (NSFC, Grant No. 40874067)the Research Fund for the Doctoral Program of Higher Education (Grant No. 20070491520)
文摘In this paper, we analyze lithospheric density distribution of China and surrounding regions on the basis of 30' × 30' gravity data and 1°×1 °P-wave velodty data, Firstly, we used the empirical equation be- tween the density and the P-wave velocity difference as the base of the initial model of the Asian lithospheric density. Secondly, we calculated the gravity anomaly, caused by the Moho discontinuity and the sedimentary layer discontinuity, by the Parker formula. Thirdly, the gravity anomaly of the spherical harmonics with 2 40 order for the anomalous body below the lithosphere is calculated based on the model of EGM96. Finally, by using Algebra Reconstruction Techniques (ART), the inversion of 30' ~ 30' residual lithospheric Bouguer gravity anomaly caused by the lithosphere yields a rather detailed struc- tural model. The results show that the lithospheric density distribution of China and surrounding regions has a certain connection with the tectonic structure. The density is relatively high in the Philippine Sea plate, Japan Sea, the Indian plate, the Kazakhstan shield and the Western Siberia plain, whereas the Tibetan Plateau has low-density characteristics. The minimum value of density lies in the north of Philippines, in the Taiwan province and in the Ryukyu island arc.
文摘In regions of complex geology and tectonic assembly, strong motion seismic arrival time records can be used to test the plausibility of existing hypothesis about the origin of lithological and tectonic features and how they are related in space and time. In this study we use differential travel time residuals at some strong motion accelerographic stations in the Medellin-Aburra Valley, in the northern Central Cordillera of the Colombian Andes, to discuss some aspects of the geological configuration. We based our work on the hypothesis that the differences between seismic travel time residuals among pairs of stations are a function of the differences in the surface geology and the near-surface upper crustal configuration. Our results are consistent with the volcanic rocks of the Quebradagrande Complex being less mafic, more weathered or more tectonically affected than previously thought, with the presence of a relatively thin dunite body on top of the metamorphic basement, and with a large lateral heterogeneity in the mainly mafic San Diego Stock.