Automatic segmentation and classification of brain tumors are of great importance to clinical treatment.However,they are challenging due to the varied and small morphology of the tumors.In this paper,we propose a mult...Automatic segmentation and classification of brain tumors are of great importance to clinical treatment.However,they are challenging due to the varied and small morphology of the tumors.In this paper,we propose a multitask multiscale residual attention network(MMRAN)to simultaneously solve the problem of accurately segmenting and classifying brain tumors.The proposed MMRAN is based on U-Net,and a parallel branch is added at the end of the encoder as the classification network.First,we propose a novel multiscale residual attention module(MRAM)that can aggregate contextual features and combine channel attention and spatial attention better and add it to the shared parameter layer of MMRAN.Second,we propose a method of dynamic weight training that can improve model performance while minimizing the need for multiple experiments to determine the optimal weights for each task.Finally,prior knowledge of brain tumors is added to the postprocessing of segmented images to further improve the segmentation accuracy.We evaluated MMRAN on a brain tumor data set containing meningioma,glioma,and pituitary tumors.In terms of segmentation performance,our method achieves Dice,Hausdorff distance(HD),mean intersection over union(MIoU),and mean pixel accuracy(MPA)values of 80.03%,6.649 mm,84.38%,and 89.41%,respectively.In terms of classification performance,our method achieves accuracy,recall,precision,and F1-score of 89.87%,90.44%,88.56%,and 89.49%,respectively.Compared with other networks,MMRAN performs better in segmentation and classification,which significantly aids medical professionals in brain tumor management.The code and data set are available at https://github.com/linkenfaqiu/MMRAN.展开更多
Recently,stacked hourglass network has shown outstanding performance in human pose estimation.However,repeated bottom-up and top-down stride convolution operations in deep convolutional neural networks lead to a signi...Recently,stacked hourglass network has shown outstanding performance in human pose estimation.However,repeated bottom-up and top-down stride convolution operations in deep convolutional neural networks lead to a significant decrease in the initial image resolution.In order to address this problem,we propose to incorporate affinage module and residual attention module into stacked hourglass network for human pose estimation.This paper introduces a novel network architecture to replace the stacked hourglass network of up-sampling operation for getting high-resolution features.We refer to the architecture as an affinage module which is critical to improve the performance of the stacked hourglass network.Additionally,we also propose a novel residual attention module to increase the supervision of up-sample process.The effectiveness of the introduced module is evaluated on standard benchmarks.Various experimental results demonstrated that our method can achieve more accurate and more robust human pose estimation results in images with complex background.展开更多
基金This paper was supported by National Natural Science Foundation of China(No.61977063 and 61872020).The authors thank all the patients for providing their MRI images and School of Biomedical Engineering at Southern Medical University,China for providing the brain tumor data set.We appreciate Dr.Fenfen Li,Wenzhou Eye Hospital,Wenzhou Medical University,China,for her support with clinical consulting and language editing.
文摘Automatic segmentation and classification of brain tumors are of great importance to clinical treatment.However,they are challenging due to the varied and small morphology of the tumors.In this paper,we propose a multitask multiscale residual attention network(MMRAN)to simultaneously solve the problem of accurately segmenting and classifying brain tumors.The proposed MMRAN is based on U-Net,and a parallel branch is added at the end of the encoder as the classification network.First,we propose a novel multiscale residual attention module(MRAM)that can aggregate contextual features and combine channel attention and spatial attention better and add it to the shared parameter layer of MMRAN.Second,we propose a method of dynamic weight training that can improve model performance while minimizing the need for multiple experiments to determine the optimal weights for each task.Finally,prior knowledge of brain tumors is added to the postprocessing of segmented images to further improve the segmentation accuracy.We evaluated MMRAN on a brain tumor data set containing meningioma,glioma,and pituitary tumors.In terms of segmentation performance,our method achieves Dice,Hausdorff distance(HD),mean intersection over union(MIoU),and mean pixel accuracy(MPA)values of 80.03%,6.649 mm,84.38%,and 89.41%,respectively.In terms of classification performance,our method achieves accuracy,recall,precision,and F1-score of 89.87%,90.44%,88.56%,and 89.49%,respectively.Compared with other networks,MMRAN performs better in segmentation and classification,which significantly aids medical professionals in brain tumor management.The code and data set are available at https://github.com/linkenfaqiu/MMRAN.
基金This work was supported by the National Natural Science Foundation of China(Grant Nos.61672375 and 61170118).
文摘Recently,stacked hourglass network has shown outstanding performance in human pose estimation.However,repeated bottom-up and top-down stride convolution operations in deep convolutional neural networks lead to a significant decrease in the initial image resolution.In order to address this problem,we propose to incorporate affinage module and residual attention module into stacked hourglass network for human pose estimation.This paper introduces a novel network architecture to replace the stacked hourglass network of up-sampling operation for getting high-resolution features.We refer to the architecture as an affinage module which is critical to improve the performance of the stacked hourglass network.Additionally,we also propose a novel residual attention module to increase the supervision of up-sample process.The effectiveness of the introduced module is evaluated on standard benchmarks.Various experimental results demonstrated that our method can achieve more accurate and more robust human pose estimation results in images with complex background.