Along with the progression of Internet of Things(IoT)technology,network terminals are becoming continuously more intelligent.IoT has been widely applied in various scenarios,including urban infrastructure,transportati...Along with the progression of Internet of Things(IoT)technology,network terminals are becoming continuously more intelligent.IoT has been widely applied in various scenarios,including urban infrastructure,transportation,industry,personal life,and other socio-economic fields.The introduction of deep learning has brought new security challenges,like an increment in abnormal traffic,which threatens network security.Insufficient feature extraction leads to less accurate classification results.In abnormal traffic detection,the data of network traffic is high-dimensional and complex.This data not only increases the computational burden of model training but also makes information extraction more difficult.To address these issues,this paper proposes an MD-MRD-ResNeXt model for abnormal network traffic detection.To fully utilize the multi-scale information in network traffic,a Multi-scale Dilated feature extraction(MD)block is introduced.This module can effectively understand and process information at various scales and uses dilated convolution technology to significantly broaden the model’s receptive field.The proposed Max-feature-map Residual with Dual-channel pooling(MRD)block integrates the maximum feature map with the residual block.This module ensures the model focuses on key information,thereby optimizing computational efficiency and reducing unnecessary information redundancy.Experimental results show that compared to the latest methods,the proposed abnormal traffic detection model improves accuracy by about 2%.展开更多
Unsupervised methods based on density representation have shown their abilities in anomaly detection,but detection performance still needs to be improved.Specifically,approaches using normalizing flows can accurately ...Unsupervised methods based on density representation have shown their abilities in anomaly detection,but detection performance still needs to be improved.Specifically,approaches using normalizing flows can accurately evaluate sample distributions,mapping normal features to the normal distribution and anomalous features outside it.Consequently,this paper proposes a Normalizing Flow-based Bidirectional Mapping Residual Network(NF-BMR).It utilizes pre-trained Convolutional Neural Networks(CNN)and normalizing flows to construct discriminative source and target domain feature spaces.Additionally,to better learn feature information in both domain spaces,we propose the Bidirectional Mapping Residual Network(BMR),which maps sample features to these two spaces for anomaly detection.The two detection spaces effectively complement each other’s deficiencies and provide a comprehensive feature evaluation from two perspectives,which leads to the improvement of detection performance.Comparative experimental results on the MVTec AD and DAGM datasets against the Bidirectional Pre-trained Feature Mapping Network(B-PFM)and other state-of-the-art methods demonstrate that the proposed approach achieves superior performance.On the MVTec AD dataset,NF-BMR achieves an average AUROC of 98.7%for all 15 categories.Especially,it achieves 100%optimal detection performance in five categories.On the DAGM dataset,the average AUROC across ten categories is 98.7%,which is very close to supervised methods.展开更多
In view of low recognition rate of complex radar intra-pulse modulation signal type by traditional methods under low signal-to-noise ratio(SNR),the paper proposes an automatic recog-nition method of complex radar intr...In view of low recognition rate of complex radar intra-pulse modulation signal type by traditional methods under low signal-to-noise ratio(SNR),the paper proposes an automatic recog-nition method of complex radar intra-pulse modulation signal type based on deep residual network.The basic principle of the recognition method is to obtain the transformation relationship between the time and frequency of complex radar intra-pulse modulation signal through short-time Fourier transform(STFT),and then design an appropriate deep residual network to extract the features of the time-frequency map and complete a variety of complex intra-pulse modulation signal type recognition.In addition,in order to improve the generalization ability of the proposed method,label smoothing and L2 regularization are introduced.The simulation results show that the proposed method has a recognition accuracy of more than 95%for complex radar intra-pulse modulation sig-nal types under low SNR(2 dB).展开更多
Single image super resolution(SISR)techniques produce images of high resolution(HR)as output from input images of low resolution(LR).Motivated by the effectiveness of deep learning methods,we provide a framework based...Single image super resolution(SISR)techniques produce images of high resolution(HR)as output from input images of low resolution(LR).Motivated by the effectiveness of deep learning methods,we provide a framework based on deep learning to achieve super resolution(SR)by utilizing deep singular-residual neural network(DSRNN)in training phase.Residuals are obtained from the difference between HR and LR images to generate LR-residual example pairs.Singular value decomposition(SVD)is applied to each LR-residual image pair to decompose into subbands of low and high frequency components.Later,DSRNN is trained on these subbands through input and output channels by optimizing the weights and biases of the network.With fewer layers in DSRNN,the influence of exploding gradients is reduced.This speeds up the learning process and also improves accuracy by using skip connections.The trained DSRNN parameters yield residuals to recover the HR subbands in the testing phase.Experimental analysis shows that the proposed method results in superior performance to existingmethods in terms of subjective quality.Extensive testing results on popular benchmark datasets such as set5,set14,and urban100 for a scaling factor of 4 show the effectiveness of the proposed method across different qualitative evaluation metrics.展开更多
With the advent of Machine and Deep Learning algorithms,medical image diagnosis has a new perception of diagnosis and clinical treatment.Regret-tably,medical images are more susceptible to capturing noises despite the...With the advent of Machine and Deep Learning algorithms,medical image diagnosis has a new perception of diagnosis and clinical treatment.Regret-tably,medical images are more susceptible to capturing noises despite the peak in intelligent imaging techniques.However,the presence of noise images degrades both the diagnosis and clinical treatment processes.The existing intelligent meth-ods suffer from the deficiency in handling the diverse range of noise in the ver-satile medical images.This paper proposes a novel deep learning network which learns from the substantial extent of noise in medical data samples to alle-viate this challenge.The proposed deep learning architecture exploits the advan-tages of the capsule network,which is used to extract correlation features and combine them with redefined residual features.Additionally,thefinal stage of dense learning is replaced with powerful extreme learning machines to achieve a better diagnosis rate,even for noisy and complex images.Extensive experimen-tation has been conducted using different medical images.Various performances such as Peak-Signal-To-Noise Ratio(PSNR)and Structural-Similarity-Index-Metrics(SSIM)are compared with the existing deep learning architectures.Addi-tionally,a comprehensive analysis of individual algorithms is analyzed.The experimental results prove that the proposed model has outperformed the other existing algorithms by a substantial margin and proved its supremacy over the other learning models.展开更多
Recognition of human activity is one of the most exciting aspects of time-series classification,with substantial practical and theoretical impli-cations.Recent evidence indicates that activity recognition from wearabl...Recognition of human activity is one of the most exciting aspects of time-series classification,with substantial practical and theoretical impli-cations.Recent evidence indicates that activity recognition from wearable sensors is an effective technique for tracking elderly adults and children in indoor and outdoor environments.Consequently,researchers have demon-strated considerable passion for developing cutting-edge deep learning sys-tems capable of exploiting unprocessed sensor data from wearable devices and generating practical decision assistance in many contexts.This study provides a deep learning-based approach for recognizing indoor and outdoor movement utilizing an enhanced deep pyramidal residual model called Sen-PyramidNet and motion information from wearable sensors(accelerometer and gyroscope).The suggested technique develops a residual unit based on a deep pyramidal residual network and introduces the concept of a pyramidal residual unit to increase detection capability.The proposed deep learning-based model was assessed using the publicly available 19Nonsens dataset,which gathered motion signals from various indoor and outdoor activities,including practicing various body parts.The experimental findings demon-strate that the proposed approach can efficiently reuse characteristics and has achieved an identification accuracy of 96.37%for indoor and 97.25%for outdoor activity.Moreover,comparison experiments demonstrate that the SenPyramidNet surpasses other cutting-edge deep learning models in terms of accuracy and F1-score.Furthermore,this study explores the influence of several wearable sensors on indoor and outdoor action recognition ability.展开更多
With the advent of Machine and Deep Learning algorithms,medical image diagnosis has a new perception of diagnosis and clinical treatment.Regret-tably,medical images are more susceptible to capturing noises despite the...With the advent of Machine and Deep Learning algorithms,medical image diagnosis has a new perception of diagnosis and clinical treatment.Regret-tably,medical images are more susceptible to capturing noises despite the peak in intelligent imaging techniques.However,the presence of noise images degrades both the diagnosis and clinical treatment processes.The existing intelligent meth-ods suffer from the deficiency in handling the diverse range of noise in the ver-satile medical images.This paper proposes a novel deep learning network which learns from the substantial extent of noise in medical data samples to alle-viate this challenge.The proposed deep learning architecture exploits the advan-tages of the capsule network,which is used to extract correlation features and combine them with redefined residual features.Additionally,the final stage of dense learning is replaced with powerful extreme learning machines to achieve a better diagnosis rate,even for noisy and complex images.Extensive experimen-tation has been conducted using different medical images.Various performances such as Peak-Signal-To-Noise Ratio(PSNR)and Structural-Similarity-Index-Metrics(SSIM)are compared with the existing deep learning architectures.Addi-tionally,a comprehensive analysis of individual algorithms is analyzed.The experimental results prove that the proposed model has outperformed the other existing algorithms by a substantial margin and proved its supremacy over the other learning models.展开更多
Falls are the contributing factor to both fatal and nonfatal injuries in the elderly.Therefore,pre-impact fall detection,which identifies a fall before the body collides with the floor,would be essential.Recently,rese...Falls are the contributing factor to both fatal and nonfatal injuries in the elderly.Therefore,pre-impact fall detection,which identifies a fall before the body collides with the floor,would be essential.Recently,researchers have turned their attention from post-impact fall detection to pre-impact fall detection.Pre-impact fall detection solutions typically use either a threshold-based or machine learning-based approach,although the threshold value would be difficult to accu-rately determine in threshold-based methods.Moreover,while additional features could sometimes assist in categorizing falls and non-falls more precisely,the esti-mated determination of the significant features would be too time-intensive,thus using a significant portion of the algorithm’s operating time.In this work,we developed a deep residual network with aggregation transformation called FDSNeXt for a pre-impact fall detection approach employing wearable inertial sensors.The proposed network was introduced to address the limitations of fea-ture extraction,threshold definition,and algorithm complexity.After training on a large-scale motion dataset,the KFall dataset,and straightforward evaluation with standard metrics,the proposed approach identified pre-impact and impact falls with high accuracy of 91.87 and 92.52%,respectively.In addition,we have inves-tigated fall detection’s performances of three state-of-the-art deep learning models such as a convolutional neural network(CNN),a long short-term memory neural network(LSTM),and a hybrid model(CNN-LSTM).The experimental results showed that the proposed FDSNeXt model outperformed these deep learning models(CNN,LSTM,and CNN-LSTM)with significant improvements.展开更多
The detection of ash content in coal slime flotation tailings using deep learning can be hindered by various factors such as foam,impurities,and changing lighting conditions that disrupt the collection of tailings ima...The detection of ash content in coal slime flotation tailings using deep learning can be hindered by various factors such as foam,impurities,and changing lighting conditions that disrupt the collection of tailings images.To address this challenge,we present a method for ash content detection in coal slime flotation tailings.This method utilizes chromatographic filter paper sampling and a multi-scale residual network,which we refer to as MRCN.Initially,tailings are sampled using chromatographic filter paper to obtain static tailings images,effectively isolating interference factors at the flotation site.Subsequently,the MRCN,consisting of a multi-scale residual network,is employed to extract image features and compute ash content.Within the MRCN structure,tailings images undergo convolution operations through two parallel branches that utilize convolution kernels of different sizes,enabling the extraction of image features at various scales and capturing a more comprehensive representation of the ash content information.Furthermore,a channel attention mechanism is integrated to enhance the performance of the model.The combination of the multi-scale residual structure and the channel attention mechanism within MRCN results in robust capabilities for image feature extraction and ash content detection.Comparative experiments demonstrate that this proposed approach,based on chromatographic filter paper sampling and the multi-scale residual network,exhibits significantly superior performance in the detection of ash content in coal slime flotation tailings.展开更多
In the era of big data rich inWe Media,the single mode retrieval system has been unable to meet people’s demand for information retrieval.This paper proposes a new solution to the problem of feature extraction and un...In the era of big data rich inWe Media,the single mode retrieval system has been unable to meet people’s demand for information retrieval.This paper proposes a new solution to the problem of feature extraction and unified mapping of different modes:A Cross-Modal Hashing retrieval algorithm based on Deep Residual Network(CMHR-DRN).The model construction is divided into two stages:The first stage is the feature extraction of different modal data,including the use of Deep Residual Network(DRN)to extract the image features,using the method of combining TF-IDF with the full connection network to extract the text features,and the obtained image and text features used as the input of the second stage.In the second stage,the image and text features are mapped into Hash functions by supervised learning,and the image and text features are mapped to the common binary Hamming space.In the process of mapping,the distance measurement of the original distance measurement and the common feature space are kept unchanged as far as possible to improve the accuracy of Cross-Modal Retrieval.In training the model,adaptive moment estimation(Adam)is used to calculate the adaptive learning rate of each parameter,and the stochastic gradient descent(SGD)is calculated to obtain the minimum loss function.The whole training process is completed on Caffe deep learning framework.Experiments show that the proposed algorithm CMHR-DRN based on Deep Residual Network has better retrieval performance and stronger advantages than other Cross-Modal algorithms CMFH,CMDN and CMSSH.展开更多
In low signal-to-noise ratio(SNR)environments,the traditional radar emitter recognition(RER)method struggles to recognize multiple radar emitter signals in parallel.This paper proposes a multi-label classification and...In low signal-to-noise ratio(SNR)environments,the traditional radar emitter recognition(RER)method struggles to recognize multiple radar emitter signals in parallel.This paper proposes a multi-label classification and recognition method for multiple radar-emitter modulation types based on a residual network.This method can quickly perform parallel classification and recognition of multi-modulation radar time-domain aliasing signals under low SNRs.First,we perform time-frequency analysis on the received signal to extract the normalized time-frequency image through the short-time Fourier transform(STFT).The time-frequency distribution image is then denoised using a deep normalized convolutional neural network(DNCNN).Secondly,the multi-label classification and recognition model for multi-modulation radar emitter time-domain aliasing signals is established,and learning the characteristics of radar signal time-frequency distribution image dataset to achieve the purpose of training model.Finally,time-frequency image is recognized and classified through the model,thus completing the automatic classification and recognition of the time-domain aliasing signal.Simulation results show that the proposed method can classify and recognize radar emitter signals of different modulation types in parallel under low SNRs.展开更多
High frequency(HF) communication is widely spread due to some merits like easy deployment and wide communication coverage. Spectrum prediction is a promising technique to facilitate the working frequency selection and...High frequency(HF) communication is widely spread due to some merits like easy deployment and wide communication coverage. Spectrum prediction is a promising technique to facilitate the working frequency selection and enhance the function of automatic link establishment. Most of the existing spectrum prediction algorithms focus on predicting spectrum values in a slot-by-slot manner and therefore are lack of timeliness. Deep learning based spectrum prediction is developed in this paper by simultaneously predicting multi-slot ahead states of multiple spectrum points within a period of time. Specifically, we first employ supervised learning and construct samples depending on longterm and short-term HF spectrum data. Then, advanced residual units are introduced to build multiple residual network modules to respectively capture characteristics in these data with diverse time scales. Further, convolution neural network fuses the outputs of residual network modules above for temporal-spectral prediction, which is combined with residual network modules to construct the deep temporal-spectral residual network. Experiments have demonstrated that the approach proposed in this paper has a significant advantage over the benchmark schemes.展开更多
Even though much advancements have been achieved with regards to the recognition of handwritten characters,researchers still face difficulties with the handwritten character recognition problem,especially with the adv...Even though much advancements have been achieved with regards to the recognition of handwritten characters,researchers still face difficulties with the handwritten character recognition problem,especially with the advent of new datasets like the Extended Modified National Institute of Standards and Technology dataset(EMNIST).The EMNIST dataset represents a challenge for both machine-learning and deep-learning techniques due to inter-class similarity and intra-class variability.Inter-class similarity exists because of the similarity between the shapes of certain characters in the dataset.The presence of intra-class variability is mainly due to different shapes written by different writers for the same character.In this research,we have optimized a deep residual network to achieve higher accuracy vs.the published state-of-the-art results.This approach is mainly based on the prebuilt deep residual network model ResNet18,whose architecture has been enhanced by using the optimal number of residual blocks and the optimal size of the receptive field of the first convolutional filter,the replacement of the first max-pooling filter by an average pooling filter,and the addition of a drop-out layer before the fully connected layer.A distinctive modification has been introduced by replacing the final addition layer with a depth concatenation layer,which resulted in a novel deep architecture having higher accuracy vs.the pure residual architecture.Moreover,the dataset images’sizes have been adjusted to optimize their visibility in the network.Finally,by tuning the training hyperparameters and using rotation and shear augmentations,the proposed model outperformed the state-of-the-art models by achieving average accuracies of 95.91%and 90.90%for the Letters and Balanced dataset sections,respectively.Furthermore,the average accuracies were improved to 95.9%and 91.06%for the Letters and Balanced sections,respectively,by using a group of 5 instances of the trained models and averaging the output class probabilities.展开更多
Higher-order statistics based approaches and signal sparseness based approaches have emerged in recent decades to resolve the underdetermined direction-of-arrival(DOA)estimation problem.These model-based methods face ...Higher-order statistics based approaches and signal sparseness based approaches have emerged in recent decades to resolve the underdetermined direction-of-arrival(DOA)estimation problem.These model-based methods face great challenges in practical applications due to high computational complexity and dependence on ideal assumptions.This paper presents an effective DOA estimation approach based on a deep residual network(DRN)for the underdetermined case.We first extract an input feature from a new matrix calculated by stacking several covariance matrices corresponding to different time delays.We then provide the input feature to the trained DRN to construct the super resolution spectrum.The DRN learns the mapping relationship between the input feature and the spatial spectrum by training.The proposed approach is superior to existing model-based estimation methods in terms of calculation efficiency,independence of source sparseness and adaptive capacity to non-ideal conditions(e.g.,low signal to noise ratio,short bit sequence).Simulations demonstrate the validity and strong performance of the proposed algorithm on both overdetermined and underdetermined cases.展开更多
It is particular important to identify the pattern of communication signal quickly and accurately at the airport terminal area with the increasing number of radio equipments.A signal modulation pattern recognition met...It is particular important to identify the pattern of communication signal quickly and accurately at the airport terminal area with the increasing number of radio equipments.A signal modulation pattern recognition method based on compressive sensing and improved residual network is proposed in this work.Firstly,the compressive sensing method is introduced in the signal preprocessing process to discard the redundant components for sampled signals.And the compressed measurement signals are taken as the input of the network.Furthermore,based on a scaled exponential linear units activation function,the residual unit and the residual network are constructed in this work to solve the problem of long training time and indistinguishable sample similar characteristics.Finally,the global residual is introduced into the training network to guarantee the convergence of the network.Simulation results show that the proposed method has higher recognition efficiency and accuracy compared with the state-of-the-art deep learning methods.展开更多
Microphone array-based sound source localization(SSL)is widely used in a variety of occasions such as video conferencing,robotic hearing,speech enhancement,speech recognition and so on.The traditional SSL methods cann...Microphone array-based sound source localization(SSL)is widely used in a variety of occasions such as video conferencing,robotic hearing,speech enhancement,speech recognition and so on.The traditional SSL methods cannot achieve satisfactory performance in adverse noisy and reverberant environments.In order to improve localization performance,a novel SSL algorithm using convolutional residual network(CRN)is proposed in this paper.The spatial features including time difference of arrivals(TDOAs)between microphone pairs and steered response power-phase transform(SRPPHAT)spatial spectrum are extracted in each Gammatone sub-band.The spatial features of different sub-bands with a frame are combine into a feature matrix as the input of CRN.The proposed algorithm employ CRN to fuse the spatial features.Since the CRN introduces the residual structure on the basis of the convolutional network,it reduce the difficulty of training procedure and accelerate the convergence of the model.A CRN model is learned from the training data in various reverberation and noise environments to establish the mapping regularity between the input feature and the sound azimuth.Through simulation verification,compared with the methods using traditional deep neural network,the proposed algorithm can achieve a better localization performance in SSL task,and provide better generalization capacity to untrained noise and reverberation.展开更多
Diabetic retinopathy,aged macular degeneration,glaucoma etc.are widely prevalent ocular pathologies which are irreversible at advanced stages.Machine learning based automated detection of these pathologies facilitate ...Diabetic retinopathy,aged macular degeneration,glaucoma etc.are widely prevalent ocular pathologies which are irreversible at advanced stages.Machine learning based automated detection of these pathologies facilitate timely clinical interventions,preventing adverse outcomes.Ophthalmologists screen these pathologies with fundus Fluorescein Angiography Images(FFA)which capture retinal components featuring diverse morphologies such as retinal vasculature,macula,optical disk etc.However,these images have low resolutions,hindering the accurate detection of ocular disorders.Construction of high resolution images from these images,by super resolution approaches expedites the diagnosis of pathologies with better accuracy.This paper presents a deep learning network for Single Image Super Resolution(SISR)of fundus fluorescein angiography images,modeled on residual learning,gridded interpolation and Swish activation functions.The image prior for this network is constructed by gridded interpolation which provides better image fidelity compared to other priors.Evaluation of the performance of this network and comparative analysis with benchmark architectures,on a standard dataset shows that the proposed network is superior with respect to performance metrics and computational time.展开更多
A novel channel attention residual network(CAN)for SISR has been proposed to rescale pixel-wise features by explicitly modeling interdependencies between channels and encoding where the visual attention is located.The...A novel channel attention residual network(CAN)for SISR has been proposed to rescale pixel-wise features by explicitly modeling interdependencies between channels and encoding where the visual attention is located.The backbone of CAN is channel attention block(CAB).The proposed CAB combines cosine similarity block(CSB)and back-projection gating block(BG).CSB fully considers global spatial information of each channel and computes the cosine similarity between each channel to obtain finer channel statistics than the first-order statistics.For further exploration of channel attention,we introduce effective back-projection to the gating mechanism and propose BG.Meanwhile,we adopt local and global residual connections in SISR which directly convey most low-frequency information to the final SR outputs and valuable high-frequency components are allocated more computational resources through channel attention mechanism.Extensive experiments show the superiority of the proposed CAN over the state-of-the-art methods on benchmark datasets in both accuracy and visual quality.展开更多
The 3D sand printing(3DSP),by binder jetting technology for rapid casting,has a pivotal role in promoting the development of the traditional casting industry as a result of producing high-quality and economical sand m...The 3D sand printing(3DSP),by binder jetting technology for rapid casting,has a pivotal role in promoting the development of the traditional casting industry as a result of producing high-quality and economical sand molds.This work presents an approach for monitoring and analyzing powder sand-bed images to serve as a real-time control system in a 3DSP machine.A deep residual network(ResNet)is used to classify the defects occurring during the powder spreading stage of the process.Firstly,a pre-trained network was applied as the initial parameter;then it was fine-tuned on the labelled defective sample dataset to accomplish the task,which defines the sand-bed defects induced in the 3DSP processing.Furthermore,the recognition and positioning of sand-bed defects were readily achieved by dividing the sand-bed images into blocks.Experiments show that the fine-tuned network has a 98.7%classification accuracy on the validation dataset of sand-bed defects and 95.4%recognition accuracy for the sand-bed images.展开更多
In this paper,we propose an improved deep residual network model to recognize human actions.Action data is composed of channel state information signals,which are continuous fine-grained signals.We replaced the tradit...In this paper,we propose an improved deep residual network model to recognize human actions.Action data is composed of channel state information signals,which are continuous fine-grained signals.We replaced the traditional identity connection with the shrinking thresholdmodule.Themodule automatically adjusts the threshold of the action data signal,and filters out signals that are not related to the principal components.We use the attention mechanism to improve the memory of the network model to the action signal,so as to better recognize the action.To verify the validity of the experiment more accurately,we collected action data in two different environments.The experimental results show that the improved network model is much better than the traditional network in recognition.The accuracy of recognition in complex places can reach 92.85%,among which the recognition rate of raising hands is up to 96%.We combine the improved residual deep network model with channel state information action data,and prove the effectiveness of our model for classification through experimental data.展开更多
基金supported by the Key Research and Development Program of Xinjiang Uygur Autonomous Region(No.2022B01008)the National Natural Science Foundation of China(No.62363032)+4 种基金the Natural Science Foundation of Xinjiang Uygur Autonomous Region(No.2023D01C20)the Scientific Research Foundation of Higher Education(No.XJEDU2022P011)National Science and Technology Major Project(No.2022ZD0115803)Tianshan Innovation Team Program of Xinjiang Uygur Autonomous Region(No.2023D14012)the“Heaven Lake Doctor”Project(No.202104120018).
文摘Along with the progression of Internet of Things(IoT)technology,network terminals are becoming continuously more intelligent.IoT has been widely applied in various scenarios,including urban infrastructure,transportation,industry,personal life,and other socio-economic fields.The introduction of deep learning has brought new security challenges,like an increment in abnormal traffic,which threatens network security.Insufficient feature extraction leads to less accurate classification results.In abnormal traffic detection,the data of network traffic is high-dimensional and complex.This data not only increases the computational burden of model training but also makes information extraction more difficult.To address these issues,this paper proposes an MD-MRD-ResNeXt model for abnormal network traffic detection.To fully utilize the multi-scale information in network traffic,a Multi-scale Dilated feature extraction(MD)block is introduced.This module can effectively understand and process information at various scales and uses dilated convolution technology to significantly broaden the model’s receptive field.The proposed Max-feature-map Residual with Dual-channel pooling(MRD)block integrates the maximum feature map with the residual block.This module ensures the model focuses on key information,thereby optimizing computational efficiency and reducing unnecessary information redundancy.Experimental results show that compared to the latest methods,the proposed abnormal traffic detection model improves accuracy by about 2%.
基金This work was supported in part by the National Key R&D Program of China 2021YFE0110500in part by the National Natural Science Foundation of China under Grant 62062021in part by the Guiyang Scientific Plan Project[2023]48-11.
文摘Unsupervised methods based on density representation have shown their abilities in anomaly detection,but detection performance still needs to be improved.Specifically,approaches using normalizing flows can accurately evaluate sample distributions,mapping normal features to the normal distribution and anomalous features outside it.Consequently,this paper proposes a Normalizing Flow-based Bidirectional Mapping Residual Network(NF-BMR).It utilizes pre-trained Convolutional Neural Networks(CNN)and normalizing flows to construct discriminative source and target domain feature spaces.Additionally,to better learn feature information in both domain spaces,we propose the Bidirectional Mapping Residual Network(BMR),which maps sample features to these two spaces for anomaly detection.The two detection spaces effectively complement each other’s deficiencies and provide a comprehensive feature evaluation from two perspectives,which leads to the improvement of detection performance.Comparative experimental results on the MVTec AD and DAGM datasets against the Bidirectional Pre-trained Feature Mapping Network(B-PFM)and other state-of-the-art methods demonstrate that the proposed approach achieves superior performance.On the MVTec AD dataset,NF-BMR achieves an average AUROC of 98.7%for all 15 categories.Especially,it achieves 100%optimal detection performance in five categories.On the DAGM dataset,the average AUROC across ten categories is 98.7%,which is very close to supervised methods.
文摘In view of low recognition rate of complex radar intra-pulse modulation signal type by traditional methods under low signal-to-noise ratio(SNR),the paper proposes an automatic recog-nition method of complex radar intra-pulse modulation signal type based on deep residual network.The basic principle of the recognition method is to obtain the transformation relationship between the time and frequency of complex radar intra-pulse modulation signal through short-time Fourier transform(STFT),and then design an appropriate deep residual network to extract the features of the time-frequency map and complete a variety of complex intra-pulse modulation signal type recognition.In addition,in order to improve the generalization ability of the proposed method,label smoothing and L2 regularization are introduced.The simulation results show that the proposed method has a recognition accuracy of more than 95%for complex radar intra-pulse modulation sig-nal types under low SNR(2 dB).
文摘Single image super resolution(SISR)techniques produce images of high resolution(HR)as output from input images of low resolution(LR).Motivated by the effectiveness of deep learning methods,we provide a framework based on deep learning to achieve super resolution(SR)by utilizing deep singular-residual neural network(DSRNN)in training phase.Residuals are obtained from the difference between HR and LR images to generate LR-residual example pairs.Singular value decomposition(SVD)is applied to each LR-residual image pair to decompose into subbands of low and high frequency components.Later,DSRNN is trained on these subbands through input and output channels by optimizing the weights and biases of the network.With fewer layers in DSRNN,the influence of exploding gradients is reduced.This speeds up the learning process and also improves accuracy by using skip connections.The trained DSRNN parameters yield residuals to recover the HR subbands in the testing phase.Experimental analysis shows that the proposed method results in superior performance to existingmethods in terms of subjective quality.Extensive testing results on popular benchmark datasets such as set5,set14,and urban100 for a scaling factor of 4 show the effectiveness of the proposed method across different qualitative evaluation metrics.
文摘With the advent of Machine and Deep Learning algorithms,medical image diagnosis has a new perception of diagnosis and clinical treatment.Regret-tably,medical images are more susceptible to capturing noises despite the peak in intelligent imaging techniques.However,the presence of noise images degrades both the diagnosis and clinical treatment processes.The existing intelligent meth-ods suffer from the deficiency in handling the diverse range of noise in the ver-satile medical images.This paper proposes a novel deep learning network which learns from the substantial extent of noise in medical data samples to alle-viate this challenge.The proposed deep learning architecture exploits the advan-tages of the capsule network,which is used to extract correlation features and combine them with redefined residual features.Additionally,thefinal stage of dense learning is replaced with powerful extreme learning machines to achieve a better diagnosis rate,even for noisy and complex images.Extensive experimen-tation has been conducted using different medical images.Various performances such as Peak-Signal-To-Noise Ratio(PSNR)and Structural-Similarity-Index-Metrics(SSIM)are compared with the existing deep learning architectures.Addi-tionally,a comprehensive analysis of individual algorithms is analyzed.The experimental results prove that the proposed model has outperformed the other existing algorithms by a substantial margin and proved its supremacy over the other learning models.
基金supported by the Thailand Science Research and Innovation Fundthe University of Phayao(Grant No.FF66-UoE001)King Mongkut’s University of Technology North Bangkok,Contract No.KMUTNB-66-KNOW-05.
文摘Recognition of human activity is one of the most exciting aspects of time-series classification,with substantial practical and theoretical impli-cations.Recent evidence indicates that activity recognition from wearable sensors is an effective technique for tracking elderly adults and children in indoor and outdoor environments.Consequently,researchers have demon-strated considerable passion for developing cutting-edge deep learning sys-tems capable of exploiting unprocessed sensor data from wearable devices and generating practical decision assistance in many contexts.This study provides a deep learning-based approach for recognizing indoor and outdoor movement utilizing an enhanced deep pyramidal residual model called Sen-PyramidNet and motion information from wearable sensors(accelerometer and gyroscope).The suggested technique develops a residual unit based on a deep pyramidal residual network and introduces the concept of a pyramidal residual unit to increase detection capability.The proposed deep learning-based model was assessed using the publicly available 19Nonsens dataset,which gathered motion signals from various indoor and outdoor activities,including practicing various body parts.The experimental findings demon-strate that the proposed approach can efficiently reuse characteristics and has achieved an identification accuracy of 96.37%for indoor and 97.25%for outdoor activity.Moreover,comparison experiments demonstrate that the SenPyramidNet surpasses other cutting-edge deep learning models in terms of accuracy and F1-score.Furthermore,this study explores the influence of several wearable sensors on indoor and outdoor action recognition ability.
文摘With the advent of Machine and Deep Learning algorithms,medical image diagnosis has a new perception of diagnosis and clinical treatment.Regret-tably,medical images are more susceptible to capturing noises despite the peak in intelligent imaging techniques.However,the presence of noise images degrades both the diagnosis and clinical treatment processes.The existing intelligent meth-ods suffer from the deficiency in handling the diverse range of noise in the ver-satile medical images.This paper proposes a novel deep learning network which learns from the substantial extent of noise in medical data samples to alle-viate this challenge.The proposed deep learning architecture exploits the advan-tages of the capsule network,which is used to extract correlation features and combine them with redefined residual features.Additionally,the final stage of dense learning is replaced with powerful extreme learning machines to achieve a better diagnosis rate,even for noisy and complex images.Extensive experimen-tation has been conducted using different medical images.Various performances such as Peak-Signal-To-Noise Ratio(PSNR)and Structural-Similarity-Index-Metrics(SSIM)are compared with the existing deep learning architectures.Addi-tionally,a comprehensive analysis of individual algorithms is analyzed.The experimental results prove that the proposed model has outperformed the other existing algorithms by a substantial margin and proved its supremacy over the other learning models.
基金This research project was also supported by the Thailand Science Research and Innovation Fundthe University of Phayao(Grant No.FF66-UoE001)King Mongkut’s University of Technology North Bangkok under Contract No.KMUTNB-66-KNOW-05.
文摘Falls are the contributing factor to both fatal and nonfatal injuries in the elderly.Therefore,pre-impact fall detection,which identifies a fall before the body collides with the floor,would be essential.Recently,researchers have turned their attention from post-impact fall detection to pre-impact fall detection.Pre-impact fall detection solutions typically use either a threshold-based or machine learning-based approach,although the threshold value would be difficult to accu-rately determine in threshold-based methods.Moreover,while additional features could sometimes assist in categorizing falls and non-falls more precisely,the esti-mated determination of the significant features would be too time-intensive,thus using a significant portion of the algorithm’s operating time.In this work,we developed a deep residual network with aggregation transformation called FDSNeXt for a pre-impact fall detection approach employing wearable inertial sensors.The proposed network was introduced to address the limitations of fea-ture extraction,threshold definition,and algorithm complexity.After training on a large-scale motion dataset,the KFall dataset,and straightforward evaluation with standard metrics,the proposed approach identified pre-impact and impact falls with high accuracy of 91.87 and 92.52%,respectively.In addition,we have inves-tigated fall detection’s performances of three state-of-the-art deep learning models such as a convolutional neural network(CNN),a long short-term memory neural network(LSTM),and a hybrid model(CNN-LSTM).The experimental results showed that the proposed FDSNeXt model outperformed these deep learning models(CNN,LSTM,and CNN-LSTM)with significant improvements.
基金This work was supported by National Natural Science Foundation of China:Grant No.62106048.
文摘The detection of ash content in coal slime flotation tailings using deep learning can be hindered by various factors such as foam,impurities,and changing lighting conditions that disrupt the collection of tailings images.To address this challenge,we present a method for ash content detection in coal slime flotation tailings.This method utilizes chromatographic filter paper sampling and a multi-scale residual network,which we refer to as MRCN.Initially,tailings are sampled using chromatographic filter paper to obtain static tailings images,effectively isolating interference factors at the flotation site.Subsequently,the MRCN,consisting of a multi-scale residual network,is employed to extract image features and compute ash content.Within the MRCN structure,tailings images undergo convolution operations through two parallel branches that utilize convolution kernels of different sizes,enabling the extraction of image features at various scales and capturing a more comprehensive representation of the ash content information.Furthermore,a channel attention mechanism is integrated to enhance the performance of the model.The combination of the multi-scale residual structure and the channel attention mechanism within MRCN results in robust capabilities for image feature extraction and ash content detection.Comparative experiments demonstrate that this proposed approach,based on chromatographic filter paper sampling and the multi-scale residual network,exhibits significantly superior performance in the detection of ash content in coal slime flotation tailings.
文摘In the era of big data rich inWe Media,the single mode retrieval system has been unable to meet people’s demand for information retrieval.This paper proposes a new solution to the problem of feature extraction and unified mapping of different modes:A Cross-Modal Hashing retrieval algorithm based on Deep Residual Network(CMHR-DRN).The model construction is divided into two stages:The first stage is the feature extraction of different modal data,including the use of Deep Residual Network(DRN)to extract the image features,using the method of combining TF-IDF with the full connection network to extract the text features,and the obtained image and text features used as the input of the second stage.In the second stage,the image and text features are mapped into Hash functions by supervised learning,and the image and text features are mapped to the common binary Hamming space.In the process of mapping,the distance measurement of the original distance measurement and the common feature space are kept unchanged as far as possible to improve the accuracy of Cross-Modal Retrieval.In training the model,adaptive moment estimation(Adam)is used to calculate the adaptive learning rate of each parameter,and the stochastic gradient descent(SGD)is calculated to obtain the minimum loss function.The whole training process is completed on Caffe deep learning framework.Experiments show that the proposed algorithm CMHR-DRN based on Deep Residual Network has better retrieval performance and stronger advantages than other Cross-Modal algorithms CMFH,CMDN and CMSSH.
基金The authors would like to acknowledge National Natural Science Foundation of China under Grant 61973037 and Grant 61673066 to provide fund for conducting experiments.
文摘In low signal-to-noise ratio(SNR)environments,the traditional radar emitter recognition(RER)method struggles to recognize multiple radar emitter signals in parallel.This paper proposes a multi-label classification and recognition method for multiple radar-emitter modulation types based on a residual network.This method can quickly perform parallel classification and recognition of multi-modulation radar time-domain aliasing signals under low SNRs.First,we perform time-frequency analysis on the received signal to extract the normalized time-frequency image through the short-time Fourier transform(STFT).The time-frequency distribution image is then denoised using a deep normalized convolutional neural network(DNCNN).Secondly,the multi-label classification and recognition model for multi-modulation radar emitter time-domain aliasing signals is established,and learning the characteristics of radar signal time-frequency distribution image dataset to achieve the purpose of training model.Finally,time-frequency image is recognized and classified through the model,thus completing the automatic classification and recognition of the time-domain aliasing signal.Simulation results show that the proposed method can classify and recognize radar emitter signals of different modulation types in parallel under low SNRs.
基金supported in part by the National Natural Science Foundation of China (Grants No. 61501510 and No. 61631020)Natural Science Foundation of Jiangsu Province (Grant No. BK20150717)+2 种基金China Postdoctoral Science Foundation Funded Project (Grant No. 2016M590398 and No.2018T110426)Jiangsu Planned Projects for Postdoctoral Research Funds (Grant No. 1501009A)Natural Science Foundation for Distinguished Young Scholars of Jiangsu Province (Grant No. BK20160034)
文摘High frequency(HF) communication is widely spread due to some merits like easy deployment and wide communication coverage. Spectrum prediction is a promising technique to facilitate the working frequency selection and enhance the function of automatic link establishment. Most of the existing spectrum prediction algorithms focus on predicting spectrum values in a slot-by-slot manner and therefore are lack of timeliness. Deep learning based spectrum prediction is developed in this paper by simultaneously predicting multi-slot ahead states of multiple spectrum points within a period of time. Specifically, we first employ supervised learning and construct samples depending on longterm and short-term HF spectrum data. Then, advanced residual units are introduced to build multiple residual network modules to respectively capture characteristics in these data with diverse time scales. Further, convolution neural network fuses the outputs of residual network modules above for temporal-spectral prediction, which is combined with residual network modules to construct the deep temporal-spectral residual network. Experiments have demonstrated that the approach proposed in this paper has a significant advantage over the benchmark schemes.
文摘Even though much advancements have been achieved with regards to the recognition of handwritten characters,researchers still face difficulties with the handwritten character recognition problem,especially with the advent of new datasets like the Extended Modified National Institute of Standards and Technology dataset(EMNIST).The EMNIST dataset represents a challenge for both machine-learning and deep-learning techniques due to inter-class similarity and intra-class variability.Inter-class similarity exists because of the similarity between the shapes of certain characters in the dataset.The presence of intra-class variability is mainly due to different shapes written by different writers for the same character.In this research,we have optimized a deep residual network to achieve higher accuracy vs.the published state-of-the-art results.This approach is mainly based on the prebuilt deep residual network model ResNet18,whose architecture has been enhanced by using the optimal number of residual blocks and the optimal size of the receptive field of the first convolutional filter,the replacement of the first max-pooling filter by an average pooling filter,and the addition of a drop-out layer before the fully connected layer.A distinctive modification has been introduced by replacing the final addition layer with a depth concatenation layer,which resulted in a novel deep architecture having higher accuracy vs.the pure residual architecture.Moreover,the dataset images’sizes have been adjusted to optimize their visibility in the network.Finally,by tuning the training hyperparameters and using rotation and shear augmentations,the proposed model outperformed the state-of-the-art models by achieving average accuracies of 95.91%and 90.90%for the Letters and Balanced dataset sections,respectively.Furthermore,the average accuracies were improved to 95.9%and 91.06%for the Letters and Balanced sections,respectively,by using a group of 5 instances of the trained models and averaging the output class probabilities.
基金supported by the Program for Innovative Research Groups of the Hunan Provincial Natural Science Foundation of China(2019JJ10004)。
文摘Higher-order statistics based approaches and signal sparseness based approaches have emerged in recent decades to resolve the underdetermined direction-of-arrival(DOA)estimation problem.These model-based methods face great challenges in practical applications due to high computational complexity and dependence on ideal assumptions.This paper presents an effective DOA estimation approach based on a deep residual network(DRN)for the underdetermined case.We first extract an input feature from a new matrix calculated by stacking several covariance matrices corresponding to different time delays.We then provide the input feature to the trained DRN to construct the super resolution spectrum.The DRN learns the mapping relationship between the input feature and the spatial spectrum by training.The proposed approach is superior to existing model-based estimation methods in terms of calculation efficiency,independence of source sparseness and adaptive capacity to non-ideal conditions(e.g.,low signal to noise ratio,short bit sequence).Simulations demonstrate the validity and strong performance of the proposed algorithm on both overdetermined and underdetermined cases.
基金supported by the National Natural Science Foundation of China(No.71874081)Special Financial Grant from China Postdoctoral Science Foundation(No.2017T100366)Open Fund of Hebei Province Key laboratory of Research on data analysis method under dynamic electro-magnetic spectrum situation.
文摘It is particular important to identify the pattern of communication signal quickly and accurately at the airport terminal area with the increasing number of radio equipments.A signal modulation pattern recognition method based on compressive sensing and improved residual network is proposed in this work.Firstly,the compressive sensing method is introduced in the signal preprocessing process to discard the redundant components for sampled signals.And the compressed measurement signals are taken as the input of the network.Furthermore,based on a scaled exponential linear units activation function,the residual unit and the residual network are constructed in this work to solve the problem of long training time and indistinguishable sample similar characteristics.Finally,the global residual is introduced into the training network to guarantee the convergence of the network.Simulation results show that the proposed method has higher recognition efficiency and accuracy compared with the state-of-the-art deep learning methods.
基金supported by Nature Science Research Project of Higher Education Institutions in Jiangsu Province under Grant No.21KJB510018National Nature Science Foundation of China (NSFC)under Grant No.62001215.
文摘Microphone array-based sound source localization(SSL)is widely used in a variety of occasions such as video conferencing,robotic hearing,speech enhancement,speech recognition and so on.The traditional SSL methods cannot achieve satisfactory performance in adverse noisy and reverberant environments.In order to improve localization performance,a novel SSL algorithm using convolutional residual network(CRN)is proposed in this paper.The spatial features including time difference of arrivals(TDOAs)between microphone pairs and steered response power-phase transform(SRPPHAT)spatial spectrum are extracted in each Gammatone sub-band.The spatial features of different sub-bands with a frame are combine into a feature matrix as the input of CRN.The proposed algorithm employ CRN to fuse the spatial features.Since the CRN introduces the residual structure on the basis of the convolutional network,it reduce the difficulty of training procedure and accelerate the convergence of the model.A CRN model is learned from the training data in various reverberation and noise environments to establish the mapping regularity between the input feature and the sound azimuth.Through simulation verification,compared with the methods using traditional deep neural network,the proposed algorithm can achieve a better localization performance in SSL task,and provide better generalization capacity to untrained noise and reverberation.
文摘Diabetic retinopathy,aged macular degeneration,glaucoma etc.are widely prevalent ocular pathologies which are irreversible at advanced stages.Machine learning based automated detection of these pathologies facilitate timely clinical interventions,preventing adverse outcomes.Ophthalmologists screen these pathologies with fundus Fluorescein Angiography Images(FFA)which capture retinal components featuring diverse morphologies such as retinal vasculature,macula,optical disk etc.However,these images have low resolutions,hindering the accurate detection of ocular disorders.Construction of high resolution images from these images,by super resolution approaches expedites the diagnosis of pathologies with better accuracy.This paper presents a deep learning network for Single Image Super Resolution(SISR)of fundus fluorescein angiography images,modeled on residual learning,gridded interpolation and Swish activation functions.The image prior for this network is constructed by gridded interpolation which provides better image fidelity compared to other priors.Evaluation of the performance of this network and comparative analysis with benchmark architectures,on a standard dataset shows that the proposed network is superior with respect to performance metrics and computational time.
文摘A novel channel attention residual network(CAN)for SISR has been proposed to rescale pixel-wise features by explicitly modeling interdependencies between channels and encoding where the visual attention is located.The backbone of CAN is channel attention block(CAB).The proposed CAB combines cosine similarity block(CSB)and back-projection gating block(BG).CSB fully considers global spatial information of each channel and computes the cosine similarity between each channel to obtain finer channel statistics than the first-order statistics.For further exploration of channel attention,we introduce effective back-projection to the gating mechanism and propose BG.Meanwhile,we adopt local and global residual connections in SISR which directly convey most low-frequency information to the final SR outputs and valuable high-frequency components are allocated more computational resources through channel attention mechanism.Extensive experiments show the superiority of the proposed CAN over the state-of-the-art methods on benchmark datasets in both accuracy and visual quality.
文摘The 3D sand printing(3DSP),by binder jetting technology for rapid casting,has a pivotal role in promoting the development of the traditional casting industry as a result of producing high-quality and economical sand molds.This work presents an approach for monitoring and analyzing powder sand-bed images to serve as a real-time control system in a 3DSP machine.A deep residual network(ResNet)is used to classify the defects occurring during the powder spreading stage of the process.Firstly,a pre-trained network was applied as the initial parameter;then it was fine-tuned on the labelled defective sample dataset to accomplish the task,which defines the sand-bed defects induced in the 3DSP processing.Furthermore,the recognition and positioning of sand-bed defects were readily achieved by dividing the sand-bed images into blocks.Experiments show that the fine-tuned network has a 98.7%classification accuracy on the validation dataset of sand-bed defects and 95.4%recognition accuracy for the sand-bed images.
基金This work was supported by Innovation Capability Support Program of Shaanxi(Program No.2018TD-016)Key Research and Development Program of Shaanxi(Program No.2019ZDLSF02-09-02).
文摘In this paper,we propose an improved deep residual network model to recognize human actions.Action data is composed of channel state information signals,which are continuous fine-grained signals.We replaced the traditional identity connection with the shrinking thresholdmodule.Themodule automatically adjusts the threshold of the action data signal,and filters out signals that are not related to the principal components.We use the attention mechanism to improve the memory of the network model to the action signal,so as to better recognize the action.To verify the validity of the experiment more accurately,we collected action data in two different environments.The experimental results show that the improved network model is much better than the traditional network in recognition.The accuracy of recognition in complex places can reach 92.85%,among which the recognition rate of raising hands is up to 96%.We combine the improved residual deep network model with channel state information action data,and prove the effectiveness of our model for classification through experimental data.