期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Generation of Accelerated Stability Experiment Profile of Inertial Platform Based on Finite Element
1
作者 CHEN Yunxia HUANG Xiaokai KANG Rui 《Chinese Journal of Aeronautics》 SCIE EI CSCD 2012年第4期584-592,共9页
The residual stress generated in the manufacturing process of inertial platform causes the drift of inertial platform parameters in long-term storage condition.However,the existing temperature cycling experiment could... The residual stress generated in the manufacturing process of inertial platform causes the drift of inertial platform parameters in long-term storage condition.However,the existing temperature cycling experiment could not meet the increased repeatability technical requirements of inertial platform parameters.In order to solve this problem,in this paper,firstly the Unigraphics(UG) software and the interface compatibility of ANSYS software are used to establish the inertial platform finite element model.Secondly,the residual stress is loaded into finite element model by ANSYS function editor in the form of surface loads to analyze the efficiency.And then,the generation based on ANSYS simulation inertial platform to accelerate the stability of experiment profile is achieved by the application of the analysis method of orthogonal experimental design and ANSYS thermal-structural coupling.The optimum accelerated stability experiment profile is determined finally,which realizes the rapid,effective release of inertial platform residual stress.The research methodology and conclusion of this paper have great theoretical and practical significance to the production technology of inertial platform. 展开更多
关键词 inertial platform residual stresses accelerated stability orthogonal experimental design ANSYS thermal-structural coupled analysis
原文传递
Numerical model establishment and verification of cold pilgering on cycle feed rate 被引量:2
2
作者 Zhi-bing Chu Dong Wei +3 位作者 Lian-yun Jiang Duo Zhang Qing-xue Huang Yu-gui Li 《Journal of Iron and Steel Research International》 SCIE EI CAS CSCD 2018年第4期398-408,共11页
A numerical model was established to calculate the cycle feed rate through studying the case of a cold pilger mill with the 304 stainless steel pipe. Firstly, the precise constitutive equation of 304 stainless steel w... A numerical model was established to calculate the cycle feed rate through studying the case of a cold pilger mill with the 304 stainless steel pipe. Firstly, the precise constitutive equation of 304 stainless steel was obtained through nonlinearly fitting the true stress-strain data from unidirectional tensile test. Then, the numerical method to calculate the equivalent deformation was determined according to the plastic deformation feature of the steel tube during cold rolling and the incremental theory. Finally, the cycle feed rate of cold roiled 304 stainless steel pipe was extracted when formulating springback through utilizing above results comprehensively and unloading law. Stress state, metal flow, finished pipe size and distribution of residual stress were obtained by finite element method to calculate the whole rolling process when the cycle feed rate was 10 mm, and the optimized model was verified through finished pipe size. 展开更多
关键词 Cycle feed rate Cold pilgering 304 stainless steel pipe Constitutive relationship Incremental theory Unloading law residual stress experiment
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部