Deep petroleum resources are in a high-temperature environment.However,the traditional deep rock coring method has no temperature preserved measures and ignores the effect of temperature on rock porosity and permeabil...Deep petroleum resources are in a high-temperature environment.However,the traditional deep rock coring method has no temperature preserved measures and ignores the effect of temperature on rock porosity and permeability,which will lead to the distortion of the petroleum resources reserves assessment.Therefore,the hollow glass microspheres/epoxy resin(HGM/EP)composites were innovatively proposed as temperature preserved materials for in-situ temperature-preserved coring(ITP-Coring),and the physical,mechanical,and temperature preserved properties were evaluated.The results indicated that:As the HGM content increased,the density and mechanical properties of the composites gradually decreased,while the water absorption was deficient without hydrostatic pressure.For composites with 50 vol%HGM,when the hydrostatic pressure reached 60 MPa,the water absorption was above 30.19%,and the physical and mechanical properties of composites were weakened.When the hydrostatic pressure was lower than 40 MPa,the mechanical properties and thermal conductivity of composites were almost unchanged.Therefore,the composites with 50 vol%HGM can be used for ITPCoring operations in deep environments with the highest hydrostatic pressure of 40 MPa.Finally,to further understand the temperature preserved performance of composites in practical applications,the temperature preserved properties were measured.An unsteady-state heat transfer model was established based on the test results,then the theoretical change of the core temperature during the coring process was obtained.The above tests results can provide a research basis for deep rock in-situ temperature preserved corer and support accurate assessment of deep petroleum reserves.展开更多
Aim: This study analyzed the effect of different finishing and polishing systems on the surface roughness of a microfilled (Amaris), and a nanofilled resin composite (Clearfil Majesty Esthetic) using Scanning electron...Aim: This study analyzed the effect of different finishing and polishing systems on the surface roughness of a microfilled (Amaris), and a nanofilled resin composite (Clearfil Majesty Esthetic) using Scanning electron microscope (SEM) analysis and surface roughness tester. Materials and Methods: Thirty five specimens of each material were prepared in a plexiglass mold (10 mm in diameter and 2 mm in depth) and cured against a Mylar matrix strip to create a baseline surface. The average surface roughness was measured using a surface profilometer (Mahr Perthometer SP4, Germany) in three different positions on each sample before and after finishing with one of the seven finishing procedures: Procedure 1: Mylar strip (control), Procedure 2: Tungsten carbide burs, Procedure 3: Diamond burs, Procedure 4: Procedure 2 + one-step diamond micropolisher (PoGo), Procedure 5: Procedure 2 + multi-step discs (Super-snap), Procedure 6: Procedure 3 + one-step diamond micropolisher (PoGo), Procedure 7: Procedure 3 + multi-step discs (Super-snap). The obtained data were analyzed using two-way analysis of variance (ANOVA) and Duncan test at a p = 0.05 significance level. Results: Nanofilled composite showed significantly lower Ra values than microfilled composite in procedures 4, 6 and 7 (p 0.05). Conclusion: Nanofilled resin composite showed significantly lower Ra values than microfilled resin composite. Regardless of finishing methods, diamond micro-polisher produced smoother surfaces than polishing discs.展开更多
Objectives: Resin-based composites are the most widely used dental restorative materials. Bulk-fill resin composites are of rising interest as they can be clinically applied in thicker increments compared to conventio...Objectives: Resin-based composites are the most widely used dental restorative materials. Bulk-fill resin composites are of rising interest as they can be clinically applied in thicker increments compared to conventional composites. The purpose of the study was to evaluate the flexural fatigue strength of a conventional and bulk-filled resin composite placed incrementally or non-incrementally. Methods: Resin composite specimens were fabricated using either a conventional (Brilliant EverGlow?) or a bulk-fill (Fill-Up!<sup>TM</sup>) resin composite by either non-incremental filling (2 × 2 × 25 mm<sup>3</sup>) or in increments of (1 × 2 × 25 mm<sup>3</sup>). Specimens were stored in distilled water for 24 h or thermocycled for 5000 cycles. The static flexural strength (σ), flexural fatigue limit (FFL) after 105 cycles and post-fatigue flexural strength (PFσ) were measured. Data were analyzed using ANOVA, with a post-hoc Tukey’s test to compare mean FFL (p σ and PFσ compared to conventional composites regardless of incremental cure or thermocycling (p σ and FFL for conventional composites but not bulk-filled composites. There was no significant difference in PFσ compared to σ after 24 h storage, but a significant increase in PFσ after thermocycling (p < 0.05). Conclusions: The type of composite rather than incremental placement had a greater effect on flexural strength, suggesting that operator placement technique had less influence than material selection. Thermocycling in combination with cyclic loading caused a strengthening effect in the composites, likely due to the absorption and dissipation of stresses, thereby enhancing resistance to fracture.展开更多
Lack of antibacterial properties in resin-based composites (RBCs) is one of the flaws that cause the failure of filling clinically. Several agents have been incorporated to endow RBCs with antibacterial properties. In...Lack of antibacterial properties in resin-based composites (RBCs) is one of the flaws that cause the failure of filling clinically. Several agents have been incorporated to endow RBCs with antibacterial properties. In this review, we summarize the recent antibacterial agents between 2015 and 2020 using keywords of antibacterial or antimicrobial dental resin composites by PubMed databases. The most effective strategies are concerned with polymerizable monomers (50%), followed by filler particles (39%) and leachable agents (11%). A recent modification of the antibacterial agent is either by combining two agents from the same category or mixing agents from different categories in one. More than two methods were used in one study to assess antibacterial efficacy. The most common method was biofilm colony-forming units (CFUs) counting method (40%), followed by live/dead bacteria staining assay of biofilms (25%), metabolic activity assay of biofilms using MTT assay (16%), lactic acid production assay of biofilms (8%), agar diffusion test (8%), and other methods (3%) such as minimal inhibitory concentration (MIC) and minimal bactericidal concentration (MBC).展开更多
This study aimed to evaluate the effects of universal primers on the tensile bond strength between zirconia and resin composites.Zirconia specimens were divided into five groups based on the surface treatment with the...This study aimed to evaluate the effects of universal primers on the tensile bond strength between zirconia and resin composites.Zirconia specimens were divided into five groups based on the surface treatment with the following primers:MP(Monobond Plus),SU(ScotchBond Universal),AZ(AZ Primer),BM(Beauty bond Multi),and BL(Bondmer Lightless).After priming,stainless steel rods were bonded to the zirconia specimens with composite resin.The tensile bond strength test was performed:stored at room temperature for 1 day;stored in distilled water at 37°C for 7 days;and underwent thermal cycling.The BL group demonstrated a significantly higher tensile bond strength than other groups when stored at room temperature for 1 day(p<0.05).The primer that acted via chemical polymerization appeared to be most effective in improving the bond strength between the two materials in this study.展开更多
Caries is one of the most prevalent human diseases,resulting from demineralization of tooth hard tissue caused by acids produced from bacteria,and can progress to pulpal inflammation.Filling restoration with dental re...Caries is one of the most prevalent human diseases,resulting from demineralization of tooth hard tissue caused by acids produced from bacteria,and can progress to pulpal inflammation.Filling restoration with dental resin composites(DRCs)is currently the most common treatment for caries.However,existing DRCs suffer from low fracture strength and lack comprehensive anti-caries bioactivity including remineralization,pulp protection,and anti-cariogenic bacteria effects.In this study,inspired by plant roots’ability to stabilize and improve soil,fluorinated urchin-like hydroxyapatite(FUHA)with a three-dimensional whisker structure and bioactive components of calcium,phosphorus,and fluorine was designed and synthesized by a dynamic self-assembly method.Furthermore,versatile FUHA particles with different loading fractions were used as functional fillers to fabricate methacrylate-based DRCs,where the urchin-like hydroxyapatite(UHA)filled DRCs and commercial DRCs(Z350XT and BEAUTIFIL II)served as the control groups.The results demonstrated that FUHA with 50 wt%loading in resin matrix endowed DRC(F5)with excellent physicochemical properties,dentin remineralization property,cell viability,promotion of dental pulp stem cells mineralization,and antibacterial properties.Meanwhile,F5 also presented good clinical handling and aesthetic characteristics.Therefore,structure/functional-integrated FUHA filled DRCs have potential as a promising strategy for tooth restoration and anti-caries bioactivity.展开更多
This study deals with the influence of surface roughness on the color of resin composites.Ten resin composites (microfilled,hybrid,and microhybrid) were each polished with 500-grit,1 200-grit,2 000-grit,and 4 000-grit...This study deals with the influence of surface roughness on the color of resin composites.Ten resin composites (microfilled,hybrid,and microhybrid) were each polished with 500-grit,1 200-grit,2 000-grit,and 4 000-grit SiC papers.The roughness parameter (Ra) was measured using a Plμ confocal microscope,and field-emission scanning electron microscope (Fe-SEM) images were used to investigate filler morphology.Color was measured using a spectroradiometer and a D65 standard illuminant (geometry diffuse/0° specular component excluded (SCE) mode).Surface roughness decreased with grit number and was not influenced by filler size or size distribution.A significant influence of Ra on lightness (L*) was found.Lightness increased with decreases in roughness,except for specimens that underwent polishing procedure 4 (PP4;500-grit,1 200-grit,2 000-grit,and 4 000-grit SiC papers consecutively).Generally,it was found that surface roughness influenced the color of resin composites.The composites that underwent PP1 (500-grit SiC paper) exhibited significant differences in chroma (C*),hue (h°),and lightness (L*) compared to composites that underwent PP3 (500-grit,1 200-grit,and 2 000-grit SiC papers consecutively) and PP4.Color difference (E*) between the polishing procedures was within acceptability thresholds in dentistry.展开更多
The characteristics of two different kinds of lignocellulosic materials(vegetable fillers)with two morphologies as Argania nut-shells(ANS)particles and Coir Fibers(CF)were used as reinforcement for phenolic resin(Bake...The characteristics of two different kinds of lignocellulosic materials(vegetable fillers)with two morphologies as Argania nut-shells(ANS)particles and Coir Fibers(CF)were used as reinforcement for phenolic resin(Bakelite)in this work,and the composite are studied as a function of filler types,shape,content(10,20,and 30%wt.percent)and manufacturing loading force(1500 and 3000 LBs).Compression molding was used to create the composites,which were then evaluated using Scanning electronic microscopy(SEM),Fourier-transform infrared spectroscopy(FTIR),bending,dynamic-mechanical-thermal and rheological studies.The morphology of broken samples demonstrates that both fillers are well dispersed and distributed.When fillers are added to the matrix,the flexural characteristics improve,and the optimal values are attained in the case of Argania nut-shells.The results showed that the kind and shape of the fillers had a direct influence on the dynamic mechanical characteristics of the composites due to the reinforcement's modulus augmentation.It was noticed that,the increment of manufacturing loading force decreased the mechanical and dynamical properties of composites.The optimum properties obtained indicate that the composites can only be manufactured at low manufacturing loading force(1500 LBs).展开更多
We improved the adhesion between silicon based insulating materials and epoxy resin composites by adding the adhesion promoter cycloborosiloxane(BSi,cyclo-1,3,3,5,7,7-hexaphenyl-1,5-diboro-3,7-disiloxane).The experime...We improved the adhesion between silicon based insulating materials and epoxy resin composites by adding the adhesion promoter cycloborosiloxane(BSi,cyclo-1,3,3,5,7,7-hexaphenyl-1,5-diboro-3,7-disiloxane).The experimental results show that the addition of BSi in the silicone rubber(SR)system significantly increases the tensile shear strength between BSi and epoxy resin(EP),reaching 309%of the original value.On this basis,the mechanism of BSi to enhance the adhesion effect was discussed.The electron deficient B in BSi attracted the electron rich N and O in EP to enhance the chemical interaction,combined with the interfacial migration behavior in the curing process,to improve the adhesion strength.This study provides the design and synthesis ideas of adhesive aids,and a reference for further exploring the interface mechanism of epoxy resin matrix composites.展开更多
Epoxy resin/Ni@C nanoparticle composites with aligned microstructure were prepared by using a procedure of magnetic field assisted curing. The results show that the resistivity of composites exhibits negative temperat...Epoxy resin/Ni@C nanoparticle composites with aligned microstructure were prepared by using a procedure of magnetic field assisted curing. The results show that the resistivity of composites exhibits negative temperature coefficient (NTC) effect above room temperature, and can be adjusted by varying the content filler and the magnitude of magnetic field applied. Hill's quantum tunneling model was modified to understand the electrical conduction mechanism in the composites. It shows that the NTC effect ascribes to the dominant thermal activated tunneling transport of electron across adjacent nanoparticles, as well as the low thermal expansivity of epoxy resin matrix.展开更多
Fluxing agents of zinc borate, antimony oxide, galss frit A and glass frit B, with different melting or softening point temperatures, were added into MgO-Al_2O_3-SiO_2/boron phenol formaldehyde resin(MAS/BPF) compos...Fluxing agents of zinc borate, antimony oxide, galss frit A and glass frit B, with different melting or softening point temperatures, were added into MgO-Al_2O_3-SiO_2/boron phenol formaldehyde resin(MAS/BPF) composites to lower the formation temperature of eutectic liquid phase and promote the ceramification of ceramifiable composites. The effects of fluxing agents on the thermogravimetric properties, phase evolution, and microstructure evolution of MAS/BPF composites were characterized by TG-DSC, XRD and SEM analyses. The results reveal that the addition of a fluxing agent highly reduces the decomposition rate of MAS/BPF composites. Fluxing agents lower the formation temperatures of liquid phases of ceramifiable MAS/BPF composites obviously, and then promote the ceramification and densification process. The final residues of composites are ceramic surrounded by large amount of glass phases.展开更多
Resin matrix carbon brush composites(RMCBCs)are critical materials for high-powered electric tools.However,effectively improving their wear resistance and heat dissipation remains a challenge.RMCBCs prepared with flak...Resin matrix carbon brush composites(RMCBCs)are critical materials for high-powered electric tools.However,effectively improving their wear resistance and heat dissipation remains a challenge.RMCBCs prepared with flake graphite powders that were evenly loaded with tungsten copper composite powder(RMCBCs-W@Cu)exhibited a low wear rate of 1.63 mm^(3)/h,exhibiting 48.6%reduction in the wear rate relative to RCMBCs without additives(RMCBCs-0).In addition,RMCBCs-W@Cu achieved a low friction coefficient of 0.243 and low electric spark grade.These findings indicate that tungsten copper composite powders provide particle reinforcement and generate a gradation effect for the epoxy resin(i.e.,connecting phase)in RMCBCs,which weakens the wear of RMCBCs caused by fatigue under a cyclic current-carrying wear.展开更多
By combining the advantages of effcient damping and high mechanical properties,Ni-Mn-Ga particle composites have a very good prospect for applications in damping structure design.In this paper,a ferromagnetic shape me...By combining the advantages of effcient damping and high mechanical properties,Ni-Mn-Ga particle composites have a very good prospect for applications in damping structure design.In this paper,a ferromagnetic shape memory alloy Ni-Mn-Ga composite is prepared.Ni-Mn-Ga particle/bisphenol-A epoxy composite cantilever beam vibration tests under a magnetic feld and without the magnetic feld are conducted to analyze the structural damping ratios n.Meanwhile,the damping characteristics of the Ni-Mn-Ga composite are studied through the axial loading-unloading method and the acoustic emission signals method.The damping coeffcient of the composite for different Ni-Mn-Ga volume fractions is obtained.The interface properties of the composite are discussed by micro examination and axial loading.The relationships between the damping of the composite and that of the component materials are discussed.The specifc damping capacity(SDC)and acoustic emission counts diagram of different specimens with different Ni-Mn-Ga volume fractions are analyzed.展开更多
To determinate the water diffusion coefficients and dynamics in adhesive/carben fiber reinforced epoxy resin composite joints, energy dispersive X-ray spectroscopy analysis(EDX) is used to establish the content chan...To determinate the water diffusion coefficients and dynamics in adhesive/carben fiber reinforced epoxy resin composite joints, energy dispersive X-ray spectroscopy analysis(EDX) is used to establish the content change of oxy- gen in the adhesive in adhesive/carbon fther reinforced epoxy resin composite joints. As water is made up of oxygen and hydrogen, the water diffusion coefficients and dynamics in adhesive/carben fiber reinforced epoxy resin composite joints can be obtained from the change in the content of oxygen in the adhesive during humidity aging, via EDX analy-sis. The authors have calculated the water diffusion coefficients and dynamics in the adhesive/carbon fiber reinforced epoxy resin composite joints with the aid of beth energy dispersive X-ray spectroscopy and elemental analysis. The de- termined results with EDX analysis are almost the same as those determined with elemental analysis and the results al- so show that the durability of the adhesive/carbon fther reinforced epoxy resin composite joints subjected to silane cou- pling agent treatment is better than those subjected to sand paper burnishing treatment and chemical oxidation treat- ment.展开更多
Introduction: The composite SonicFillTM (Kerr/Kavo) is indicated for posterior restorations, with a single increment up to 5 mm due to reduced polymerization shrinkage, thus reducing working time. Aim: Evaluation of m...Introduction: The composite SonicFillTM (Kerr/Kavo) is indicated for posterior restorations, with a single increment up to 5 mm due to reduced polymerization shrinkage, thus reducing working time. Aim: Evaluation of marginal microleakage with SonicFillTM. Method and Materials: There were sectioned sixty noncarious human molars in the occluso-cervical direction. Class V cavities were prepared on each tooth with gingival margin walls in a standardized way. The specimens were divided into 4 groups: group 1—restored with SonicFillTM (Kerr/Kavo), group 2—restored with FiltekTM SupremeXTE (3M ESPE), group 3—the cavities were not restored;group 4—restored with SonicFillTM (Kerr/Kavo). In groups 1, 2 and 4 the enamel was conditioned with 37% orthophosphoric acid and applied the self-etch adhesive system Clear- fillTM SE BOND (Kuraray). The specimens were stored in distilled water at 37?C for 7 days. After, the specimens, were immersed in a solution of 99mTc-Pertechnetate and the radioactivity was assessed with a gamma camera. The nonparametric Kruskal-Wallis and Mann-Whitney test with Bonferroni correction at a significance level of 5% were used for the statistical analyses. Results: There are significant differences between the positive and negative control groups and between these and experimental groups (p TM and FiltekTM SupremeXTE. Conclusion: The new composite SonicFillTM and FiltekTM SupremeXTE showed no difference concerning dye penetration. The Sonic- FillTM restorative system showed no influence in concerning microleakage.展开更多
Novel branched silicone methacrylate was developed.The mechanical and biological properties of the resin system were investigated to select the formula proportion with the best overall performance.The novel silicone-c...Novel branched silicone methacrylate was developed.The mechanical and biological properties of the resin system were investigated to select the formula proportion with the best overall performance.The novel silicone-containing monomers were combined with an incremental sequence of glass filler concentrations in commonly used Bis-GMA/TEGDMA(50/50,wt./wt.)dental resin systems.Physicochemical properties,surface properties,antibacterial adhesion effect,anti-biofilm effect,protein adsorption,and cytotoxicity were evaluated.The results showed that BSMs did not affect the double bond conversion of dental resin,but could reduce volumetric shrinkage(p<0.05).The BSM containing resins can resist protein and bacteria adhesion(S.mutans)because it has increased hydrophobicity and a lower free energy surface(p<0.05).However,there were no statistically significant differences in cytotoxicity,surface roughness,and double bond conversion rate.Overall,the results indicate that changes in a material’s properties are not strictly proportional to its composition.Synthetic silicone resin methacrylate can reduce the polymerization shrinkage,have low surface energy and anti-adhesion properties.Silicone composite resin containing 70%matrix has the best comprehensive properties.The silicone methacrylate composite represents an innovative method to improve the properties and reducing secondary caries.展开更多
With the development of bionics, the bionic non-smooth surfaces are introduced to the field of tribology. Although non-smooth surface has been studied widely, the studies of non-smooth surface under the natural seawat...With the development of bionics, the bionic non-smooth surfaces are introduced to the field of tribology. Although non-smooth surface has been studied widely, the studies of non-smooth surface under the natural seawater lubrication are still very fewer, especially experimental research. The influences of smooth and non-smooth surface on the frictional properties of the glass fiber-epoxy resin composite(GF/EPR) coupled with stainless steel 316 L are investigated under natural seawater lubrication in this paper. The tested non-smooth surfaces include the surfaces with semi-spherical pits, the conical pits, the cone-cylinder combined pits, the cylindrical pits and through holes. The friction and wear tests are performed using a ring-on-disc test rig under 60 N load and 1000 r/min rotational speed. The tests results show that GF/EPR with bionic non-smooth surface has quite lower friction coefficient and better wear resistance than GF/EPR with smooth surface without pits. The average friction coefficient of GF/EPR with semi-spherical pits is 0.088, which shows the largest reduction is approximately 63.18% of GF/EPR with smooth surface. In addition, the wear debris on the worn surfaces of GF/EPR are observed by a confocal scanning laser microscope. It is shown that the primary wear mechanism is the abrasive wear. The research results provide some design parameters for non-smooth surface, and the experiment results can serve as a beneficial supplement to non-smooth surface study.展开更多
Bionic non-smooth surface is widely applied in metal and ceramics materials. In order to introduce this technology to high pressure seawater pump, the influence of bionic non-smooth surface on the engineering plastics...Bionic non-smooth surface is widely applied in metal and ceramics materials. In order to introduce this technology to high pressure seawater pump, the influence of bionic non-smooth surface on the engineering plastics used in pump should be investigated. The comparative tests are carried out with a ring-on-disc configuration under 800, 1000, 1200 and 1400 r/min in order to research the influence of the bionic non-smooth surface on glass fiber-epoxy resin composite(GF/EPR) under natural seawater lubrication. The disc surfaces are textured with five kinds of pits, which are semi-spherical, conical, cone-cylinder combined, cylindrical pits and through holes, respectively. A smooth surface is tested as reference. The results show that the lubrication performance of dimpled GF/EPR sample is much better than that of the smooth sample under all rotational speeds. The semi-spherical pits surface has more obvious friction reduction than the others, which shows that the least reduction is approximately 43.29% of smooth surface under 1200 r/rain. However, the wear level is only marginally influenced by dimples. The surface morphology investigations disclose severe modifications caused by abrasive wear primarily. The results are helpful to vary friction properties of GF/EPR by non-smooth surface, or provide references to the design of non-smooth surfaces under certain condition.展开更多
In this paper, nanotechnology for the improvement of dental composite resins has been reviewed in the background of the existing shortcomings, focusing on the improvement for polymerization shrinkage, anti-bacterial p...In this paper, nanotechnology for the improvement of dental composite resins has been reviewed in the background of the existing shortcomings, focusing on the improvement for polymerization shrinkage, anti-bacterial properties and mechanical properties of composite resins. The results show that the use of nanotechnology and nano materials can be an effective method to improve the performance of dental composite resins in a various ways. At last, the paper also discusses the perspective about the dental composite resins.展开更多
Aim: The aim of this study was to compare the flexural and compressive strengths of a new sonicactivated bulk-fill system (Sonicfill) with other bulk-fill resins and a universal posterior composite resin. Materials an...Aim: The aim of this study was to compare the flexural and compressive strengths of a new sonicactivated bulk-fill system (Sonicfill) with other bulk-fill resins and a universal posterior composite resin. Materials and Methods: A low-stress flowable base resin material (SDR), a bulk-fill composite resin (Tetric Evo Ceram), a universal posterior composite (GC G-aenial), and the Sonicfill system were compared. The specimens were prepared for each group following ISO Standard 4049 (flexural strength) and ADA 27 specifications (compressive strength). One-way variance analysis and Kruskal-Wallis tests were used to determine the statistical differences among groups (p 0.05). Results: The Sonicfill system presented significantly higher compressive strength than other groups (p < 0.001). For flexural strength results, although the Sonicfill system showed the highest values, no statistically significant differences were determined among all groups (p > 0.001). Conclusion: Due to the ability to place restorations with single increment and ease of use, the Sonicfill system can be an alternative for posterior restorations.展开更多
基金National Natural Science Foundation of China(grant number 51827901)funded by the Program for Guangdong Introducing Innovative and Enterpreneurial Teams(No.2019ZT08G315)Shenzhen Basic Research Program(General Program)(No.JCYJ20190808153416970)
文摘Deep petroleum resources are in a high-temperature environment.However,the traditional deep rock coring method has no temperature preserved measures and ignores the effect of temperature on rock porosity and permeability,which will lead to the distortion of the petroleum resources reserves assessment.Therefore,the hollow glass microspheres/epoxy resin(HGM/EP)composites were innovatively proposed as temperature preserved materials for in-situ temperature-preserved coring(ITP-Coring),and the physical,mechanical,and temperature preserved properties were evaluated.The results indicated that:As the HGM content increased,the density and mechanical properties of the composites gradually decreased,while the water absorption was deficient without hydrostatic pressure.For composites with 50 vol%HGM,when the hydrostatic pressure reached 60 MPa,the water absorption was above 30.19%,and the physical and mechanical properties of composites were weakened.When the hydrostatic pressure was lower than 40 MPa,the mechanical properties and thermal conductivity of composites were almost unchanged.Therefore,the composites with 50 vol%HGM can be used for ITPCoring operations in deep environments with the highest hydrostatic pressure of 40 MPa.Finally,to further understand the temperature preserved performance of composites in practical applications,the temperature preserved properties were measured.An unsteady-state heat transfer model was established based on the test results,then the theoretical change of the core temperature during the coring process was obtained.The above tests results can provide a research basis for deep rock in-situ temperature preserved corer and support accurate assessment of deep petroleum reserves.
文摘Aim: This study analyzed the effect of different finishing and polishing systems on the surface roughness of a microfilled (Amaris), and a nanofilled resin composite (Clearfil Majesty Esthetic) using Scanning electron microscope (SEM) analysis and surface roughness tester. Materials and Methods: Thirty five specimens of each material were prepared in a plexiglass mold (10 mm in diameter and 2 mm in depth) and cured against a Mylar matrix strip to create a baseline surface. The average surface roughness was measured using a surface profilometer (Mahr Perthometer SP4, Germany) in three different positions on each sample before and after finishing with one of the seven finishing procedures: Procedure 1: Mylar strip (control), Procedure 2: Tungsten carbide burs, Procedure 3: Diamond burs, Procedure 4: Procedure 2 + one-step diamond micropolisher (PoGo), Procedure 5: Procedure 2 + multi-step discs (Super-snap), Procedure 6: Procedure 3 + one-step diamond micropolisher (PoGo), Procedure 7: Procedure 3 + multi-step discs (Super-snap). The obtained data were analyzed using two-way analysis of variance (ANOVA) and Duncan test at a p = 0.05 significance level. Results: Nanofilled composite showed significantly lower Ra values than microfilled composite in procedures 4, 6 and 7 (p 0.05). Conclusion: Nanofilled resin composite showed significantly lower Ra values than microfilled resin composite. Regardless of finishing methods, diamond micro-polisher produced smoother surfaces than polishing discs.
文摘Objectives: Resin-based composites are the most widely used dental restorative materials. Bulk-fill resin composites are of rising interest as they can be clinically applied in thicker increments compared to conventional composites. The purpose of the study was to evaluate the flexural fatigue strength of a conventional and bulk-filled resin composite placed incrementally or non-incrementally. Methods: Resin composite specimens were fabricated using either a conventional (Brilliant EverGlow?) or a bulk-fill (Fill-Up!<sup>TM</sup>) resin composite by either non-incremental filling (2 × 2 × 25 mm<sup>3</sup>) or in increments of (1 × 2 × 25 mm<sup>3</sup>). Specimens were stored in distilled water for 24 h or thermocycled for 5000 cycles. The static flexural strength (σ), flexural fatigue limit (FFL) after 105 cycles and post-fatigue flexural strength (PFσ) were measured. Data were analyzed using ANOVA, with a post-hoc Tukey’s test to compare mean FFL (p σ and PFσ compared to conventional composites regardless of incremental cure or thermocycling (p σ and FFL for conventional composites but not bulk-filled composites. There was no significant difference in PFσ compared to σ after 24 h storage, but a significant increase in PFσ after thermocycling (p < 0.05). Conclusions: The type of composite rather than incremental placement had a greater effect on flexural strength, suggesting that operator placement technique had less influence than material selection. Thermocycling in combination with cyclic loading caused a strengthening effect in the composites, likely due to the absorption and dissipation of stresses, thereby enhancing resistance to fracture.
文摘Lack of antibacterial properties in resin-based composites (RBCs) is one of the flaws that cause the failure of filling clinically. Several agents have been incorporated to endow RBCs with antibacterial properties. In this review, we summarize the recent antibacterial agents between 2015 and 2020 using keywords of antibacterial or antimicrobial dental resin composites by PubMed databases. The most effective strategies are concerned with polymerizable monomers (50%), followed by filler particles (39%) and leachable agents (11%). A recent modification of the antibacterial agent is either by combining two agents from the same category or mixing agents from different categories in one. More than two methods were used in one study to assess antibacterial efficacy. The most common method was biofilm colony-forming units (CFUs) counting method (40%), followed by live/dead bacteria staining assay of biofilms (25%), metabolic activity assay of biofilms using MTT assay (16%), lactic acid production assay of biofilms (8%), agar diffusion test (8%), and other methods (3%) such as minimal inhibitory concentration (MIC) and minimal bactericidal concentration (MBC).
文摘This study aimed to evaluate the effects of universal primers on the tensile bond strength between zirconia and resin composites.Zirconia specimens were divided into five groups based on the surface treatment with the following primers:MP(Monobond Plus),SU(ScotchBond Universal),AZ(AZ Primer),BM(Beauty bond Multi),and BL(Bondmer Lightless).After priming,stainless steel rods were bonded to the zirconia specimens with composite resin.The tensile bond strength test was performed:stored at room temperature for 1 day;stored in distilled water at 37°C for 7 days;and underwent thermal cycling.The BL group demonstrated a significantly higher tensile bond strength than other groups when stored at room temperature for 1 day(p<0.05).The primer that acted via chemical polymerization appeared to be most effective in improving the bond strength between the two materials in this study.
基金the support from the National Natural Science Foundation of China(Grant Nos.82201115,81921002)China Postdoctoral Science Foundation(No.2021M702166)the Innovative Research Team of High-level Local Universities in Shanghai,Oral and Maxillofacial Regeneration and Functional Restoration.
文摘Caries is one of the most prevalent human diseases,resulting from demineralization of tooth hard tissue caused by acids produced from bacteria,and can progress to pulpal inflammation.Filling restoration with dental resin composites(DRCs)is currently the most common treatment for caries.However,existing DRCs suffer from low fracture strength and lack comprehensive anti-caries bioactivity including remineralization,pulp protection,and anti-cariogenic bacteria effects.In this study,inspired by plant roots’ability to stabilize and improve soil,fluorinated urchin-like hydroxyapatite(FUHA)with a three-dimensional whisker structure and bioactive components of calcium,phosphorus,and fluorine was designed and synthesized by a dynamic self-assembly method.Furthermore,versatile FUHA particles with different loading fractions were used as functional fillers to fabricate methacrylate-based DRCs,where the urchin-like hydroxyapatite(UHA)filled DRCs and commercial DRCs(Z350XT and BEAUTIFIL II)served as the control groups.The results demonstrated that FUHA with 50 wt%loading in resin matrix endowed DRC(F5)with excellent physicochemical properties,dentin remineralization property,cell viability,promotion of dental pulp stem cells mineralization,and antibacterial properties.Meanwhile,F5 also presented good clinical handling and aesthetic characteristics.Therefore,structure/functional-integrated FUHA filled DRCs have potential as a promising strategy for tooth restoration and anti-caries bioactivity.
基金Project (No. MAT2009-09795) supported by the Spanish Ministry of Science and Innovation
文摘This study deals with the influence of surface roughness on the color of resin composites.Ten resin composites (microfilled,hybrid,and microhybrid) were each polished with 500-grit,1 200-grit,2 000-grit,and 4 000-grit SiC papers.The roughness parameter (Ra) was measured using a Plμ confocal microscope,and field-emission scanning electron microscope (Fe-SEM) images were used to investigate filler morphology.Color was measured using a spectroradiometer and a D65 standard illuminant (geometry diffuse/0° specular component excluded (SCE) mode).Surface roughness decreased with grit number and was not influenced by filler size or size distribution.A significant influence of Ra on lightness (L*) was found.Lightness increased with decreases in roughness,except for specimens that underwent polishing procedure 4 (PP4;500-grit,1 200-grit,2 000-grit,and 4 000-grit SiC papers consecutively).Generally,it was found that surface roughness influenced the color of resin composites.The composites that underwent PP1 (500-grit SiC paper) exhibited significant differences in chroma (C*),hue (h°),and lightness (L*) compared to composites that underwent PP3 (500-grit,1 200-grit,and 2 000-grit SiC papers consecutively) and PP4.Color difference (E*) between the polishing procedures was within acceptability thresholds in dentistry.
文摘The characteristics of two different kinds of lignocellulosic materials(vegetable fillers)with two morphologies as Argania nut-shells(ANS)particles and Coir Fibers(CF)were used as reinforcement for phenolic resin(Bakelite)in this work,and the composite are studied as a function of filler types,shape,content(10,20,and 30%wt.percent)and manufacturing loading force(1500 and 3000 LBs).Compression molding was used to create the composites,which were then evaluated using Scanning electronic microscopy(SEM),Fourier-transform infrared spectroscopy(FTIR),bending,dynamic-mechanical-thermal and rheological studies.The morphology of broken samples demonstrates that both fillers are well dispersed and distributed.When fillers are added to the matrix,the flexural characteristics improve,and the optimal values are attained in the case of Argania nut-shells.The results showed that the kind and shape of the fillers had a direct influence on the dynamic mechanical characteristics of the composites due to the reinforcement's modulus augmentation.It was noticed that,the increment of manufacturing loading force decreased the mechanical and dynamical properties of composites.The optimum properties obtained indicate that the composites can only be manufactured at low manufacturing loading force(1500 LBs).
基金the Core Research Facilities of College of Chemistry and Molecular Sciences and Wuhan University Test Center and Open Fund of Hubei Key Laboratory of Aerospace Power Advanced Technologythe Open Fund of Hubei Key Laboratory of Aerospace Power Advanced Technologythe Special Fund for Industrial and informatization Industry Foundation Reconstruction and High Quality Development of Manufacturing Industry(No.TC220H068)。
文摘We improved the adhesion between silicon based insulating materials and epoxy resin composites by adding the adhesion promoter cycloborosiloxane(BSi,cyclo-1,3,3,5,7,7-hexaphenyl-1,5-diboro-3,7-disiloxane).The experimental results show that the addition of BSi in the silicone rubber(SR)system significantly increases the tensile shear strength between BSi and epoxy resin(EP),reaching 309%of the original value.On this basis,the mechanism of BSi to enhance the adhesion effect was discussed.The electron deficient B in BSi attracted the electron rich N and O in EP to enhance the chemical interaction,combined with the interfacial migration behavior in the curing process,to improve the adhesion strength.This study provides the design and synthesis ideas of adhesive aids,and a reference for further exploring the interface mechanism of epoxy resin matrix composites.
基金supported by the National Natural Sci-ence Foundation of China under grant No. 50704021.
文摘Epoxy resin/Ni@C nanoparticle composites with aligned microstructure were prepared by using a procedure of magnetic field assisted curing. The results show that the resistivity of composites exhibits negative temperature coefficient (NTC) effect above room temperature, and can be adjusted by varying the content filler and the magnitude of magnetic field applied. Hill's quantum tunneling model was modified to understand the electrical conduction mechanism in the composites. It shows that the NTC effect ascribes to the dominant thermal activated tunneling transport of electron across adjacent nanoparticles, as well as the low thermal expansivity of epoxy resin matrix.
文摘Fluxing agents of zinc borate, antimony oxide, galss frit A and glass frit B, with different melting or softening point temperatures, were added into MgO-Al_2O_3-SiO_2/boron phenol formaldehyde resin(MAS/BPF) composites to lower the formation temperature of eutectic liquid phase and promote the ceramification of ceramifiable composites. The effects of fluxing agents on the thermogravimetric properties, phase evolution, and microstructure evolution of MAS/BPF composites were characterized by TG-DSC, XRD and SEM analyses. The results reveal that the addition of a fluxing agent highly reduces the decomposition rate of MAS/BPF composites. Fluxing agents lower the formation temperatures of liquid phases of ceramifiable MAS/BPF composites obviously, and then promote the ceramification and densification process. The final residues of composites are ceramic surrounded by large amount of glass phases.
基金Projects(51772081,51837009,51971091)supported by the National Natural Science Foundation of ChinaProject(HFZL2018CXY003-4)supported by the Industry-University-Research Cooperation of AECC,ChinaProject(kq1902046)supported by the Major Science and Technology Projects of Changsha City,China。
文摘Resin matrix carbon brush composites(RMCBCs)are critical materials for high-powered electric tools.However,effectively improving their wear resistance and heat dissipation remains a challenge.RMCBCs prepared with flake graphite powders that were evenly loaded with tungsten copper composite powder(RMCBCs-W@Cu)exhibited a low wear rate of 1.63 mm^(3)/h,exhibiting 48.6%reduction in the wear rate relative to RCMBCs without additives(RMCBCs-0).In addition,RMCBCs-W@Cu achieved a low friction coefficient of 0.243 and low electric spark grade.These findings indicate that tungsten copper composite powders provide particle reinforcement and generate a gradation effect for the epoxy resin(i.e.,connecting phase)in RMCBCs,which weakens the wear of RMCBCs caused by fatigue under a cyclic current-carrying wear.
基金supported by the National Natural Science Foundation of China (No:10972021)
文摘By combining the advantages of effcient damping and high mechanical properties,Ni-Mn-Ga particle composites have a very good prospect for applications in damping structure design.In this paper,a ferromagnetic shape memory alloy Ni-Mn-Ga composite is prepared.Ni-Mn-Ga particle/bisphenol-A epoxy composite cantilever beam vibration tests under a magnetic feld and without the magnetic feld are conducted to analyze the structural damping ratios n.Meanwhile,the damping characteristics of the Ni-Mn-Ga composite are studied through the axial loading-unloading method and the acoustic emission signals method.The damping coeffcient of the composite for different Ni-Mn-Ga volume fractions is obtained.The interface properties of the composite are discussed by micro examination and axial loading.The relationships between the damping of the composite and that of the component materials are discussed.The specifc damping capacity(SDC)and acoustic emission counts diagram of different specimens with different Ni-Mn-Ga volume fractions are analyzed.
基金Supported by Commission of Science Technology and Industry for National Defense of China(No.JPPT-115-477).
文摘To determinate the water diffusion coefficients and dynamics in adhesive/carben fiber reinforced epoxy resin composite joints, energy dispersive X-ray spectroscopy analysis(EDX) is used to establish the content change of oxy- gen in the adhesive in adhesive/carbon fther reinforced epoxy resin composite joints. As water is made up of oxygen and hydrogen, the water diffusion coefficients and dynamics in adhesive/carben fiber reinforced epoxy resin composite joints can be obtained from the change in the content of oxygen in the adhesive during humidity aging, via EDX analy-sis. The authors have calculated the water diffusion coefficients and dynamics in the adhesive/carbon fiber reinforced epoxy resin composite joints with the aid of beth energy dispersive X-ray spectroscopy and elemental analysis. The de- termined results with EDX analysis are almost the same as those determined with elemental analysis and the results al- so show that the durability of the adhesive/carbon fther reinforced epoxy resin composite joints subjected to silane cou- pling agent treatment is better than those subjected to sand paper burnishing treatment and chemical oxidation treat- ment.
文摘Introduction: The composite SonicFillTM (Kerr/Kavo) is indicated for posterior restorations, with a single increment up to 5 mm due to reduced polymerization shrinkage, thus reducing working time. Aim: Evaluation of marginal microleakage with SonicFillTM. Method and Materials: There were sectioned sixty noncarious human molars in the occluso-cervical direction. Class V cavities were prepared on each tooth with gingival margin walls in a standardized way. The specimens were divided into 4 groups: group 1—restored with SonicFillTM (Kerr/Kavo), group 2—restored with FiltekTM SupremeXTE (3M ESPE), group 3—the cavities were not restored;group 4—restored with SonicFillTM (Kerr/Kavo). In groups 1, 2 and 4 the enamel was conditioned with 37% orthophosphoric acid and applied the self-etch adhesive system Clear- fillTM SE BOND (Kuraray). The specimens were stored in distilled water at 37?C for 7 days. After, the specimens, were immersed in a solution of 99mTc-Pertechnetate and the radioactivity was assessed with a gamma camera. The nonparametric Kruskal-Wallis and Mann-Whitney test with Bonferroni correction at a significance level of 5% were used for the statistical analyses. Results: There are significant differences between the positive and negative control groups and between these and experimental groups (p TM and FiltekTM SupremeXTE. Conclusion: The new composite SonicFillTM and FiltekTM SupremeXTE showed no difference concerning dye penetration. The Sonic- FillTM restorative system showed no influence in concerning microleakage.
基金This work was funded by the National Natural Science Foundation of China(Nos.81970974,82071162)Guangdong Financial Fund for High-Caliber Hospital Construction(174-2018-XMZC-0001-03-0125/D-15).
文摘Novel branched silicone methacrylate was developed.The mechanical and biological properties of the resin system were investigated to select the formula proportion with the best overall performance.The novel silicone-containing monomers were combined with an incremental sequence of glass filler concentrations in commonly used Bis-GMA/TEGDMA(50/50,wt./wt.)dental resin systems.Physicochemical properties,surface properties,antibacterial adhesion effect,anti-biofilm effect,protein adsorption,and cytotoxicity were evaluated.The results showed that BSMs did not affect the double bond conversion of dental resin,but could reduce volumetric shrinkage(p<0.05).The BSM containing resins can resist protein and bacteria adhesion(S.mutans)because it has increased hydrophobicity and a lower free energy surface(p<0.05).However,there were no statistically significant differences in cytotoxicity,surface roughness,and double bond conversion rate.Overall,the results indicate that changes in a material’s properties are not strictly proportional to its composition.Synthetic silicone resin methacrylate can reduce the polymerization shrinkage,have low surface energy and anti-adhesion properties.Silicone composite resin containing 70%matrix has the best comprehensive properties.The silicone methacrylate composite represents an innovative method to improve the properties and reducing secondary caries.
基金Supported by National Natural Science Foundation of China(Grant No.51375421)Hebei Provincial Key Project of Science and Technology Research of(ZD20131027)
文摘With the development of bionics, the bionic non-smooth surfaces are introduced to the field of tribology. Although non-smooth surface has been studied widely, the studies of non-smooth surface under the natural seawater lubrication are still very fewer, especially experimental research. The influences of smooth and non-smooth surface on the frictional properties of the glass fiber-epoxy resin composite(GF/EPR) coupled with stainless steel 316 L are investigated under natural seawater lubrication in this paper. The tested non-smooth surfaces include the surfaces with semi-spherical pits, the conical pits, the cone-cylinder combined pits, the cylindrical pits and through holes. The friction and wear tests are performed using a ring-on-disc test rig under 60 N load and 1000 r/min rotational speed. The tests results show that GF/EPR with bionic non-smooth surface has quite lower friction coefficient and better wear resistance than GF/EPR with smooth surface without pits. The average friction coefficient of GF/EPR with semi-spherical pits is 0.088, which shows the largest reduction is approximately 63.18% of GF/EPR with smooth surface. In addition, the wear debris on the worn surfaces of GF/EPR are observed by a confocal scanning laser microscope. It is shown that the primary wear mechanism is the abrasive wear. The research results provide some design parameters for non-smooth surface, and the experiment results can serve as a beneficial supplement to non-smooth surface study.
基金Supported by National Natural Science Foundation of China(Grant No.51375421)Key Project of Science and Technology Research of Hebei Province,China(ZD20131027)
文摘Bionic non-smooth surface is widely applied in metal and ceramics materials. In order to introduce this technology to high pressure seawater pump, the influence of bionic non-smooth surface on the engineering plastics used in pump should be investigated. The comparative tests are carried out with a ring-on-disc configuration under 800, 1000, 1200 and 1400 r/min in order to research the influence of the bionic non-smooth surface on glass fiber-epoxy resin composite(GF/EPR) under natural seawater lubrication. The disc surfaces are textured with five kinds of pits, which are semi-spherical, conical, cone-cylinder combined, cylindrical pits and through holes, respectively. A smooth surface is tested as reference. The results show that the lubrication performance of dimpled GF/EPR sample is much better than that of the smooth sample under all rotational speeds. The semi-spherical pits surface has more obvious friction reduction than the others, which shows that the least reduction is approximately 43.29% of smooth surface under 1200 r/rain. However, the wear level is only marginally influenced by dimples. The surface morphology investigations disclose severe modifications caused by abrasive wear primarily. The results are helpful to vary friction properties of GF/EPR by non-smooth surface, or provide references to the design of non-smooth surfaces under certain condition.
文摘In this paper, nanotechnology for the improvement of dental composite resins has been reviewed in the background of the existing shortcomings, focusing on the improvement for polymerization shrinkage, anti-bacterial properties and mechanical properties of composite resins. The results show that the use of nanotechnology and nano materials can be an effective method to improve the performance of dental composite resins in a various ways. At last, the paper also discusses the perspective about the dental composite resins.
文摘Aim: The aim of this study was to compare the flexural and compressive strengths of a new sonicactivated bulk-fill system (Sonicfill) with other bulk-fill resins and a universal posterior composite resin. Materials and Methods: A low-stress flowable base resin material (SDR), a bulk-fill composite resin (Tetric Evo Ceram), a universal posterior composite (GC G-aenial), and the Sonicfill system were compared. The specimens were prepared for each group following ISO Standard 4049 (flexural strength) and ADA 27 specifications (compressive strength). One-way variance analysis and Kruskal-Wallis tests were used to determine the statistical differences among groups (p 0.05). Results: The Sonicfill system presented significantly higher compressive strength than other groups (p < 0.001). For flexural strength results, although the Sonicfill system showed the highest values, no statistically significant differences were determined among all groups (p > 0.001). Conclusion: Due to the ability to place restorations with single increment and ease of use, the Sonicfill system can be an alternative for posterior restorations.