A new method to track resin flow fronts, referred to as the topological interpolated method (TIM), which is based onfilling states and topological relations of adjacent nodes was proposed. An experiment on the mould f...A new method to track resin flow fronts, referred to as the topological interpolated method (TIM), which is based onfilling states and topological relations of adjacent nodes was proposed. An experiment on the mould filling process wasconducted. It was compared with exact solutions and the experimental results, and good agreements were observed.Numerical and experimental comparisons with the conventional contour mathod were also carried out, and it showedthat TIM could enhance the local accuracy of flow front solutions with respect to the contour method when mergingflow fronts and resin approaching the mold wall were involved.展开更多
An experimental procedure was designed to monitor the preform thickness change real-time throughout the vacuum assisted resin infusion( VARI) process. Two kinds of liquid with different viscosity were infused with dif...An experimental procedure was designed to monitor the preform thickness change real-time throughout the vacuum assisted resin infusion( VARI) process. Two kinds of liquid with different viscosity were infused with different post-filling time. The variation of the part thickness during the VARI process was studied. And the effect of the post-filling time on the part thickness was investigated.The results indicate that the compaction behavior of the preform can be divided into three stages,and the fiber volume fraction varies with the post-filling time in a similar sinusoid form. In addition,the post-filling should be overtime for the greatest fiber volume fraction,and when the resin is infused with higher viscosity,the greatest fiber volume fraction is higher.展开更多
In dentistry, a wide range of materials is available for restorative treatment;a typical product of such restorative materials mainly consists of radically polymerizable monomer(s) and inorganic filler(s) (for added p...In dentistry, a wide range of materials is available for restorative treatment;a typical product of such restorative materials mainly consists of radically polymerizable monomer(s) and inorganic filler(s) (for added physical strength), as well as a surface modifier (e.g. silane coupling agent) for improved affinity between monomer and filler. It is favorable to use an optimal surface modifier depending on the respective restorative materials. However, commercially available surface modifiers, which are synthesized by the ton, are not always suited for what is required for properties of the many different dental restorative materials. As a potential solution to such a problem, we focused on the latest technology, “micro flow reactors” that enabled an on-demand low-volume synthesis of many types of surface modifiers. Using micro reaction fields of such flow reactors, we synthesized a novel long-chain silane coupling agent. Compared to the control system synthesized using a conventional reaction flask, the novel system enabled significant reduction in reaction time without inducing any major side reactions. A dental composite resin that was treated with the novel coupling agent exhibited higher toughness, suggesting that such a silane coupling agent was an effective surface modifier.展开更多
基金This work is supported by the National Natural Science Foundation of China(No.10372027).
文摘A new method to track resin flow fronts, referred to as the topological interpolated method (TIM), which is based onfilling states and topological relations of adjacent nodes was proposed. An experiment on the mould filling process wasconducted. It was compared with exact solutions and the experimental results, and good agreements were observed.Numerical and experimental comparisons with the conventional contour mathod were also carried out, and it showedthat TIM could enhance the local accuracy of flow front solutions with respect to the contour method when mergingflow fronts and resin approaching the mold wall were involved.
基金The Fundamental Research Funds for the Central Universities,China(No.2232014D3-26)Innovation Fund of the Chinese National Engineering Research Center,China(No.SAM C14-JS-15-049)Science and Technology Commission of Shanghai Municipality,China(No.14DZ1100402)
文摘An experimental procedure was designed to monitor the preform thickness change real-time throughout the vacuum assisted resin infusion( VARI) process. Two kinds of liquid with different viscosity were infused with different post-filling time. The variation of the part thickness during the VARI process was studied. And the effect of the post-filling time on the part thickness was investigated.The results indicate that the compaction behavior of the preform can be divided into three stages,and the fiber volume fraction varies with the post-filling time in a similar sinusoid form. In addition,the post-filling should be overtime for the greatest fiber volume fraction,and when the resin is infused with higher viscosity,the greatest fiber volume fraction is higher.
文摘In dentistry, a wide range of materials is available for restorative treatment;a typical product of such restorative materials mainly consists of radically polymerizable monomer(s) and inorganic filler(s) (for added physical strength), as well as a surface modifier (e.g. silane coupling agent) for improved affinity between monomer and filler. It is favorable to use an optimal surface modifier depending on the respective restorative materials. However, commercially available surface modifiers, which are synthesized by the ton, are not always suited for what is required for properties of the many different dental restorative materials. As a potential solution to such a problem, we focused on the latest technology, “micro flow reactors” that enabled an on-demand low-volume synthesis of many types of surface modifiers. Using micro reaction fields of such flow reactors, we synthesized a novel long-chain silane coupling agent. Compared to the control system synthesized using a conventional reaction flask, the novel system enabled significant reduction in reaction time without inducing any major side reactions. A dental composite resin that was treated with the novel coupling agent exhibited higher toughness, suggesting that such a silane coupling agent was an effective surface modifier.