期刊文献+
共找到527篇文章
< 1 2 27 >
每页显示 20 50 100
Multi-field dynamic modeling and numerical simulation of aluminum alloy resistance spot welding 被引量:1
1
作者 陶建峰 贡亮 +1 位作者 刘成良 赵阳 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2012年第12期3066-3072,共7页
In order to explore the influence of welding parameters and to investigate the Al alloy (AA) nugget formation process, a comprehensive model involving electrical-thermal-mechanical and metallurgical analysis was estab... In order to explore the influence of welding parameters and to investigate the Al alloy (AA) nugget formation process, a comprehensive model involving electrical-thermal-mechanical and metallurgical analysis was established to numerically display the resistance spot welding (RSW) process within multiple fields and understand the AA-RSW physics. A multi-disciplinary finite element method (FEM) framework and a empirical sub-model were built to analyze the affecting factors on weld nugget and the underlying nature of welding physics with dynamic simulation procedure. Specifically, a counter-intuitive phenomenon of the resistance time-variation caused by the transient inverse virtual variation (TIVV) effect was highlighted and analyzed on the basis of welding current and temperature distribution simulation. The empirical model describing the TIVV phenomenon was used for modifying the dynamic resistance simulation during the AA spot welding process. The numerical and experimental results show that the proposed multi-field FEM model agrees with the measured AA welding feature, and the modified dynamic resistance model captures the physics of nugget growth and the electrical-thermal behavior under varying welding current and fluctuating heat input. 展开更多
关键词 resistance spot welding aluminum alloy multi-field modeling simulation finite element method dynamic resistance transient inverse virtual variation effect
下载PDF
Numerical and Experimental Study on Nugget Formation Process in Resistance Spot Welding of Aluminum Alloy 被引量:2
2
作者 罗震 颜福裕 +3 位作者 李洋 白杨 姚杞 谈辉 《Transactions of Tianjin University》 EI CAS 2015年第2期135-139,共5页
The weld nugget formation in the resistance spot welding(RSW) of aluminum alloy was investigated in the present study. The nugget formation process was directly observed by using a digital high-speed camera. Numerical... The weld nugget formation in the resistance spot welding(RSW) of aluminum alloy was investigated in the present study. The nugget formation process was directly observed by using a digital high-speed camera. Numerical simulation was also employed to investigate the nugget formation process. The results showed that for the RSW of two aluminum alloy sheets, a nugget was first formed in the workpiece/workpiece(W/W) interface and grew along the radial direction and axial direction of the sheets, and then it became a large elliptical nugget. For the RSW of three aluminum alloy sheets, two small nuggets were firstly formed in two W/W interfaces and grew along the axial direction and radial direction; finally they fused into one nugget. Besides, there existed a critical welding time, after which the nugget size remained nearly unchanged. This indicates that a long welding time is unnecessary for the RSW of aluminum alloy. In addition, the calculated nugget radius was compared with the experimental results, which showed that the simulation results agreed well with the experimental results. 展开更多
关键词 resistance SPOT welding aluminum alloy NUGGET formation high-speed PHOTOGRAPHY numerical simulation
下载PDF
Effect of electromagnetic interaction on microstructure and corrosion resistance of 7075 aluminium alloy during modified indirect electric arc welding process 被引量:5
3
作者 J. S. REYNA-MONTOYA M. A. GARCIA-RENTERIA +3 位作者 V. L. CRUZ-HERNANDEZ F. F. CURIEL-LOPEZ L. R. DZIB-PEREZ L. A. FALCON-FRANCO 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2019年第3期473-484,共12页
The effects of applying an electromagnetic interaction of low intensity (EMILI) on the microstructure and corrosion resistance of 7075-T651 Al alloy plates (13 mm in thickness) during modified indirect electric arc (M... The effects of applying an electromagnetic interaction of low intensity (EMILI) on the microstructure and corrosion resistance of 7075-T651 Al alloy plates (13 mm in thickness) during modified indirect electric arc (MIEA) welding were investigated. The welding process was conducted in a single pass with a heat input of ~1.5 kJ/mm. The microstructural observations of the welds were correlated with the effect of EMILI on the local mechanical properties and the corrosion resistance in natural seawater by means of microhardness measurements and electrochemical impedance spectroscopy, respectively. Microstructural characterization of the welds revealed a grain refinement in the weld metal due to the electromagnetic stirring induced by EMILI of 3 mT during welding. In addition, observations in the scanning electron microscope showed that the precipitation of Cu-rich phases and segregation of eutectics were reduced in the heat affected zone (HAZ) also as an effect of EMILI. The high corrosion dissolution of the 7075-T651 welds in natural seawater and the extent of overaging in the HAZ were reduced when welding with EMILI of 3 mT. Thus, EMILI along with the MIEA technique may lead to welded joints with better microstructural characteristics, improved mechanical properties in the HAZ and reduced electrochemical activity. 展开更多
关键词 7075-T651 Al alloy modified indirect arc welding microstructural characterization corrosion resistance electromagnetic interaction
下载PDF
Effect of welding current on strength and microstructure in resistance spot welding of AZ31 Mg alloy 被引量:1
4
作者 王亚荣 张忠典 冯吉才 《China Welding》 EI CAS 2007年第4期37-41,共5页
In this paper, resistance spot welding were performed on lmm-thickness magnesium AZ31B plates. The effect of welding current on the microstructure and tensile shear force was investigated. It was found that the weldin... In this paper, resistance spot welding were performed on lmm-thickness magnesium AZ31B plates. The effect of welding current on the microstructure and tensile shear force was investigated. It was found that the welding current governed the nugget growth, and the nugget could not form if current levels were insufficient. The nugget revealed a homogeneous, equiaxed, fine-grained structure, which consisted of non-equilibrium microstructure of α-phase dendrites surrounded by eutectic mixtures of α and β( Mg17All2 ) in the grain boundaries. With increasing welding current, the size of grains in nugget would be more smaller and uniform, and the width of plastic rings would be larger. Tensile shear tests showed that tensile shear force of the joints increased with increasing welding current when the welding current was smaller than 17 000 A. The maximum tensile shear force was up to 1980 N. 展开更多
关键词 welding current MICROSTRUCTURE tensile shear force magnesium alloy resistance spot welding
下载PDF
Optimization design of resistance spot welding parameters of magnesium alloy 被引量:1
5
作者 郎波 孙大千 +1 位作者 吴琼 宣兆志 《China Welding》 EI CAS 2008年第1期49-56,共8页
By means of the quadratic regression combination design process, the regression equations of nugget diameter and tensile shear load of spot welded joint were established. Effects of welding parameters on the nugget di... By means of the quadratic regression combination design process, the regression equations of nugget diameter and tensile shear load of spot welded joint were established. Effects of welding parameters on the nugget diameter and the tensile shear load were investigated. The results show that effect of welding current on nugget diameter is the most evident. And higher welding current will result in bigger nugget diameter. Besides, interaction effect of electrode force and welding current on tensile shear load is the most evident compared with others. The optimum welding parameters corresponding to the maximum of tensile shear load have been obtained by programming using Matlab software, which is 4, 7 kN electrode force, 28 kA welding current and 4 cycle welding time. Under the condition of the optimum welding parameters, the joint having no visible defects can be obtained, nugget diameter and tensile shear load being 6. 8 mm and 3 256 N, respectively. 展开更多
关键词 resistance spot welding magnesium alloy quadratic regression combination design welding parameter
下载PDF
Optimization of friction stir welding parameters for improved corrosion resistance of AA2219 aluminum alloy joints 被引量:11
6
作者 G.RAMBABU D.BALAJI NAIK +2 位作者 C.H.VENKATA RAO K.SRINIVASA RAO G.MADHUSUDAN REDDY 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2015年第4期330-337,共8页
The aluminium alloy AA2219(Al—Cu—Mg alloy) is widely used in the fabrication of lightweight structures with high strength-to-weight ratio and good corrosion resistance.Welding is main fabrication method of AA2219 al... The aluminium alloy AA2219(Al—Cu—Mg alloy) is widely used in the fabrication of lightweight structures with high strength-to-weight ratio and good corrosion resistance.Welding is main fabrication method of AA2219 alloy for manufacturing various engineering components.Friction stir welding(FSW) is a recently developed solid state welding process to overcome the problems encountered in fusion welding.This process uses a non-consumable tool to generate frictional heat on the abutting surfaces.The welding parameters,such as tool pin profile,rotational speed,welding speed and axial force,play major role in determining the microstructure and corrosion resistance of welded joint.The main objective of this work is to develop a mathematical model to predict the corrosion resistance of friction stir welded AA2219 aluminium alloy by incorporating FSW process parameters.In this work a central composite design with four factors and five levels has been used to minimize the experimental conditions.Dynamic polarization testing was carried out to determine critical pitting potential in millivolt,which is a criteria for measuring corrosion resistance and the data was used in model.Further the response surface method(RSM) was used to develop the model.The developed mathematical model was optimized using the simulated annealing algorithm optimizing technique to maximize the corrosion resistance of the friction stir welded AA2219 aluminium alloy joints. 展开更多
关键词 2219铝合金 耐腐蚀性能 搅拌摩擦焊 焊接接头 参数优化 数学模型 摩擦搅拌焊接 模拟退火算法
下载PDF
Study on asymmetric thermo-physical effect mechanism of intermediate frequency DC resistance spot welding for aluminum alloy 被引量:1
7
作者 Han Lijun Lin Pengyu +1 位作者 Zhang Gengwei Zhong Lihui 《China Welding》 CAS 2021年第1期48-56,共9页
The asymmetric thermo-physical mechanism of the resistance spot welding technique with intermediate frequency(2 kHz)and direct current(RSWIFDC)on the high strength aluminum(Al)alloy TL091 was studied here in view of t... The asymmetric thermo-physical mechanism of the resistance spot welding technique with intermediate frequency(2 kHz)and direct current(RSWIFDC)on the high strength aluminum(Al)alloy TL091 was studied here in view of the Peltier effect.On the basis of the analysis of the electrode cap surface erosion state and the shape-position of the nugget,it was concluded that asymmetric thermo-physical phenomenon occurred on both ends of the nugget,and even had an influence upon the shape-forming coefficient and the vertical position deviation of the nugget,and the erosion degree of the electrode caps.In this work,the relative thermo-physical model of the welding was established combined with the Peltier effect and the spot welding characteristics.Accordingly the relative welding phenomena,such as nugget center deviation and different erosion degree of the electrode cap surface,was explained clearly using the model related with the Peltier effect for the first time.This model provides important theoretical basis for future study and application of Al alloy spot welding,based on which,effective works may be done to promote the quality of the Al alloy welded joints and to obtain favorable control upon parameters of Al alloy welding for electrode caps. 展开更多
关键词 resistant spot welding Peltier effect thermo-physical mechanism aluminum alloy electrode cap erosion
下载PDF
Effect of electrode wear on weld nugget formation in resistance spot welding of magnesium alloy
8
作者 王亚荣 冯吉才 张忠典 《中国有色金属学会会刊:英文版》 CSCD 2005年第S3期327-330,共4页
The effect of electrode wear on the formation and growth of weld nugget in resistance spot welding of AZ31B Mg alloy was studied by an axisymmetric finite element model, employing a contact resistance model based on t... The effect of electrode wear on the formation and growth of weld nugget in resistance spot welding of AZ31B Mg alloy was studied by an axisymmetric finite element model, employing a contact resistance model based on the micro-contact theory. The results show that electrode wear causes the growth of electrode tip diameter, which leads to the current density and temperature at the sheet/sheet interface reduced and diameter of nugget decreased, has been shown to be dominant in determining the deterioration in weld quality. Alloying and pitting at electrode surface decrease the electric conduction of electrode, resulting in non-uniform distribution of temperature and current density and contribution to the further damage, at the same time initiate expulsion and electrode sticking during welding process and worse the quality of weld. 展开更多
关键词 Mg alloy resistance SPOT welding electrode WEAR FEM simulation
下载PDF
Lap joining of titanium alloy using laser welding and resistance seam welding combined process
9
作者 张新戈 陈彦宾 +1 位作者 李俐群 雷正龙 《China Welding》 EI CAS 2010年第1期76-80,共5页
Titanium alloy lap joints were performed by combined laser welding and resistance seam welding process. The welding characteristics of this combined process were investigated compared with that of laser welding. The e... Titanium alloy lap joints were performed by combined laser welding and resistance seam welding process. The welding characteristics of this combined process were investigated compared with that of laser welding. The experimental results indicate that the combined process welded joint has larger weld width at the lap surface. The joint tensile shear force of combined process is 2. 5 times that of laser welding. There are some pores around the lap surface in laser welded joint, and most pores can be eliminated by resistance seam welding process. Metallographic examinations of combined process welded joint reveal that the microstructure in heat-affected zone (HAZ) and weld zone has the acicular martensite morphology, which causes that the microhardness in HAZ and weld zone increases compared with the base metal, and the microhardness in weld zone is highest. 展开更多
关键词 laser welding resistance seam welding titanium alloy tensile shear force PORE
下载PDF
Microstructure of deep cryogenic treatment electrode for resistance spot welding of aluminium alloy
10
作者 吴志生 高珊 +3 位作者 赵菲 陈晓燕 阴旭 王晓峰 《China Welding》 EI CAS 2010年第4期49-53,共5页
Cr-Zr-Cu alloy electrodes for resistance spot welding of aluminium alloy are treated by deep cryogenic treatment processes. The Cr-Zr-Cu alloy electrodes are analyzed by transmission electron microscope( TEM ) , and... Cr-Zr-Cu alloy electrodes for resistance spot welding of aluminium alloy are treated by deep cryogenic treatment processes. The Cr-Zr-Cu alloy electrodes are analyzed by transmission electron microscope( TEM ) , and results show that the common dislocation in Cr-Zr-Cu alloy electrodes is changed into the dislocation loop, and twin crystal is found after deep cryogenic treatment. The parallel twin crystal band is observed by selected electron diffraction(SED) and the twin crystal plane is marked as ( 111 ). The Cr-Zr-Cu alloy electrode is studied by X-ray diffraction( XRD ) and results show that the intensity of diffraction peak is obviously changed after deep cryogenic treatment, and the grain rotates to preferred orientation. The Cr-Zr- Cu alloy electrode is studied by positron annihilation technique (PAT) and results indicate that the amount of vacancy defects is less than that of Cr-Zr-Cu alloy before deep cryogenic treatment. The main elements in Cr-Zr-Cu alloy are studied with X- ray photoelctron spectroscopy( XPS ) and the intensity of spectrum peak is increased after deep cryogenic treatment. 展开更多
关键词 MICROSTRUCTURE deep cryogenic treatment copper alloy ELECTRODE resistance spot welding
下载PDF
Physical simulation of alloying between copper and aluminum on electrode tip for resistance spot welding of 5A02 aluminum alloy
11
作者 赵菲 吴志生 陈素玲 《China Welding》 EI CAS 2011年第4期46-50,共5页
The applicatio, n of aluminum alloy in the automotive and aviation fields is impeded by the wear and life of electrode for resistance spot welding (RSW). The alloying interaction between the copper electrode and alu... The applicatio, n of aluminum alloy in the automotive and aviation fields is impeded by the wear and life of electrode for resistance spot welding (RSW). The alloying interaction between the copper electrode and aluminum alloy sheet is the main reason of making electrode life decrease. The test of alloying interaction is difficult because of the transient in RSW of aluminum alloy. In this paper, the process of alloying between copper and aluminum on the electrode tip is simulated with Gleeble-1500 thermal simulation testing machine. The microstructure and composition of the sample of physical simulation for the alloying interaction between the copper electrode and aluminum alloy are analyzed using scanning electron microscope (SEM) and X-ray diffraction (XRD) respectively. The results indicate that the alloying reaction between copper and aluminum under the different temperature, pressure and time is mainly the eutectic reaction. The reaction result is the eutectic of ( Al + CuAl2 ) , and then Cu9Al4 forms through solid diffusion between the CuAl2 phase and the copper base metal. 展开更多
关键词 aluminum alloy resistance spot welding Cu/Al alloying physical simulation
下载PDF
Microstructure characterization and quasi-static failure behavior of resistance spot welds of AA6111-T4 aluminum alloy 被引量:3
12
作者 吴赛楠 Bita GHAFFARI +3 位作者 Elizabeth HETRICK Mei LI 贾志宏 刘庆 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2014年第12期3879-3885,共7页
The microstructure, microhardness and quasi-static failure behavior of resistance spot welds of AA6111-T4 aluminum alloy were experimentally investigated. Optical metallography and high-resolution hardness traverses w... The microstructure, microhardness and quasi-static failure behavior of resistance spot welds of AA6111-T4 aluminum alloy were experimentally investigated. Optical metallography and high-resolution hardness traverses were utilized to characterize the weld nugget, heat affected zone and base metal. The AA6111 spot welds displayed a softer nugget and hardened heat affected zone, compared with the base metal. The through-thickness hardness of the base metal sheet was not constant and had to be carefully considered to determine the effect of welding on material properties. Quasi-static lap-shear tensile tests were used to determine the failure load and failure mode. All tensile specimens failed through the interfacial fracture. This failure mode is consistent with the observed reduced hardness in the weld nugget. 展开更多
关键词 AA6111 aluminum alloy resistance spot welding microstructure MICROHARDNESS mechanical properties
下载PDF
Effect of cooling conditions on corrosion resistance of friction stir welded 2219-T62 aluminum alloy thick plate joint 被引量:11
13
作者 Wei-feng XU Jun MA +2 位作者 Miao WANG Hong-jian LU Yu-xuan LUO 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2020年第6期1491-1499,共9页
Friction stir welding (FSW) with water cooling and air cooling was used to weld 2219-T62 aluminum alloy joints with a thickness of 20 mm. The effect of cooling conditions on the corrosion resistance of joints in 3.5% ... Friction stir welding (FSW) with water cooling and air cooling was used to weld 2219-T62 aluminum alloy joints with a thickness of 20 mm. The effect of cooling conditions on the corrosion resistance of joints in 3.5% NaCl solution was investigated using the open circuit potential (OCP), the potentiodynamic polarization, and the corrosion morphology after immersing for different time. And the precipitates distribution was characterized by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The results reveal that the weld nugget zone (WNZ) owning positive potential, lower corrosion current density and fine and uniform precipitates, is much more difficult to corrode than the heat affected zone (HAZ) and the base metal (BM). Compared with air-cooled joint, the water-cooled joint has better corrosion resistance. In addition, the results of microstructure observation show that the potential, distribution and size of second phase particles determine the corrosion resistance of FSW AA2219 alloy joints in chlorine-contained solution. 展开更多
关键词 friction stir welding aluminum alloy air cooling water cooling corrosion resistance second phase particles
下载PDF
Effects of alloy elements on microstructure and crack resistance of Fe-C-Cr weld surfacing layer 被引量:6
14
作者 孙大谦 王文权 +1 位作者 宣兆志 任振安 《China Welding》 EI CAS 2003年第2期92-97,共6页
Effects of alloy elements on the microstructure and crack resistance of Fe-C-Cr weld surfacing layer were investigated. The results show that microstructures of the layer mainly consist of carbides and austenite matri... Effects of alloy elements on the microstructure and crack resistance of Fe-C-Cr weld surfacing layer were investigated. The results show that microstructures of the layer mainly consist of carbides and austenite matrix. Increasing C and Cr contents impair the crack resistance of the layer due to increased amount of brittle carbides. The addition of Ni, Nb or Mo improves the crack resistance of Fe-C-Cr weld surfacing layer by increasing the amount of austenite and forming fine NbC or M 7C 3 carbides in the layer. But, the excessive Nb (>2.50wt%) or Mo (>1.88wt%) impairs the crack resistance of the layer, which has relation with increased carbides or carbide coarsening and austenite matrix solid solution strengthening. The proper combination of C, Cr, Ni, Nb and Mo can further improve not only the crack resistance of Fe-C-Cr weld surfacing layer but also the erosion resistance as a result of fine NbC and M 7C 3 carbides distributing uniformly in austenite matrix. The optimal layer compositions are 3.05wt%C, 20.58wt%Cr, 1.75wt%Ni, 2.00wt%Nb and 1.88wt%Mo. 展开更多
关键词 weld surfacing layer alloy element crack resistance
下载PDF
Effects of Alloying Elements on Microstructure and Erosion Resistance of Fe-C-Cr Weld Surfacing Layer 被引量:4
15
作者 Daqian SUN, Wenquan WANG, Zhaozhi XUAN, Yue XU and Zhenfeng ZHOUSchool of Materials Science and Engineering, Jilin University, Changchun 130025, China 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2003年第4期351-354,共4页
Effects of alloying elements on microstructure and erosion resistance of Fe-C-Cr weld surfacing layer have been studied. The experimental results show that increasing C and Cr content favors improving the erosion resi... Effects of alloying elements on microstructure and erosion resistance of Fe-C-Cr weld surfacing layer have been studied. The experimental results show that increasing C and Cr content favors improving the erosion resistance of the layer, and the excessive C and Cr result in decreasing the erosion resistance at 90 deg. erosion. That Mo, Nb or Ti improves the erosion resistance of Fe-C-Cr weld surfacing layer is mainly attributed to increasing the amount of M7C3 and forming fine NbC or TiC in austenite matrix, but the excessive Mo, Nb or Ti is unfavorable. The addition of Mo, Nb and Ti in proper combination possesses stronger effect on improving the erosion resistance and the erosion resistance (εA) of Fe-C-Cr weld surfacing layer with fine NbC, TiC and M7C3 distributing uniformly in austenite matrix obviously increases to 2.81 at 15 deg. erosion and 2.88 at 90 deg. erosion when the layer composition is 3.05C, 20.58Cr, 1.88Mo, 2.00Nb and 1.05Ti (in wt pct). 展开更多
关键词 weld surfacing layer alloying elements Erosion resistance
下载PDF
Interfacial characterization of resistance spot welded joint of steel and aluminum alloy 被引量:3
16
作者 张伟华 孙大千 +3 位作者 殷世强 韩立军 邱小明 陈庆雷 《China Welding》 EI CAS 2010年第4期6-10,共5页
The dissimilar material resistance spot welding of galvanized high strength steel and aluminum alloy had been conducted. The welded joint exhibited a thin reaction layer composed of Fe2Al5 and Fe4Al13 phases at steel/... The dissimilar material resistance spot welding of galvanized high strength steel and aluminum alloy had been conducted. The welded joint exhibited a thin reaction layer composed of Fe2Al5 and Fe4Al13 phases at steel/aluminum interface. The welded joint presented a tensile shear load of 3.3 kN with an aluminum alloy nugget diameter of 5.7 mm. The interfacial failure mode was observed for the tensile shear specimen and fracture occurred at reaction layer and aluminum alloy fusion zone beside the interface. The reaction layer with compounds was the main reason for reduction of the welded joint mechanical property. 展开更多
关键词 high strength steel aluminum alloy resistance spot welded joint interfacial characterization
下载PDF
Effects of nugget alloying on microstructures and properties of resistance spot welded joints of aluminum and steel 被引量:2
17
作者 Zhang Yueying Sun Daqian +2 位作者 Li Hongmei Gu Xiaoyan Liu Yanjun 《China Welding》 EI CAS 2016年第3期36-41,共6页
The resistance spot welding of 6063-T6 aluminum alloy and 16Mn steel was studied by nugget alloying. The results indicated that the Al-steel joint had characteristics of welding-brazing. The nugget zone consisted main... The resistance spot welding of 6063-T6 aluminum alloy and 16Mn steel was studied by nugget alloying. The results indicated that the Al-steel joint had characteristics of welding-brazing. The nugget zone consisted mainly of α-Al solid solution with dislocations and fine Mg2Si particles. The interface zone had a double-layer structure: Fe2Al5 layer at steel side and Fe4Al13 layer at Al nugget side. The nugget alloying has a significant effect on the joint properties by changing phase composition and refinement of grains. When alloy elements Cu, Zn, Ti and Ni were added, the tensile shear load of Al-steel joints reached 2 780 N, 2 910 N, 2 915 N and 2 929 N respectively, which increased by 24. 1%, 29.9%, 30. 1% and 30. 7% respectively compared with that (2 241 N) of joint without nugget alloying. Therefore, it is an effective way for improving mechanical properties of resistance spot welded Al-steel joints. 展开更多
关键词 6063-T6 aluminum alloy 16Mn steel resistance spot welding nugget alloying
下载PDF
Microstructure and mechanical property of resistance spot welded joint of aluminum alloy to high strength steel with especial electrodes 被引量:2
18
作者 张伟华 孙大千 +3 位作者 殷世强 韩立军 高阳 邱小明 《China Welding》 EI CAS 2011年第2期1-6,共6页
Dissimilar material joining of 6008 aluminum alloy to H220 YD galvanized high strength steel was performed by resistance spot welding with especial electrodes that were a flat tip electrode against the steel surface a... Dissimilar material joining of 6008 aluminum alloy to H220 YD galvanized high strength steel was performed by resistance spot welding with especial electrodes that were a flat tip electrode against the steel surface and a domed tip electrode upon the aluminum alloy surface. An intermetallic compound layer composed of Fe2Al5 and FeAl3 was formed at the steel/ aluminum interface in the welded joint. The thickness of the intermetallic compound layer increased with increasing welding current and welding time, and the maximum thickness being 7. 0 μm was obtained at 25 kA and 300 ms. The weld nugget diameter and tensile shear load of the welded joint had increased tendencies first with increasing welding current ( 18 -22 kA) and welding time ( 50 - 300 ms), then changed little with further increasing welding current ( 22 - 25 kA) and welding time (300 -400 ms). The maximum tensile shear load reached 5.4 kN at 22 kA and 300 ms. The welded joint fractured through brittle intermetallic compound layer and aluminum alloy nugget. 展开更多
关键词 aluminum alloy high strength steel resistance spot welded joint microstructure mechanical property
下载PDF
Filling technique for keyhole of friction stir spot welding based on the principles of resistance spot welding 被引量:3
19
作者 Deng Lipeng Ke Liming Liu Jinhe 《China Welding》 EI CAS 2019年第3期34-41,共8页
Keyhole at the end of a weld prepared by friction stir welding(FSW)is one of the major issues that impede the application of FSW.To address this issue,a keyhole filling technique was proposed in this paper,which is ba... Keyhole at the end of a weld prepared by friction stir welding(FSW)is one of the major issues that impede the application of FSW.To address this issue,a keyhole filling technique was proposed in this paper,which is based on the principles of resistance spot welding(RSW).A three-phase secondary rectifier resistance spot welder was applied as the experimental instrument for filling the keyhole in the center of friction stir spot weld(FSSW).The test sheet is a 2024-T4 aluminium alloy with a thickness of 6.0mm.The experiments results show that the filled joint strength is improved by 26.12%since the area is increased for the plug in the keyhole.And there are two kinds of dimples in the tensile fracture-equiaxial dimples and long dimples.The filled joint involves the fusion welding zone(FWZ),pressure welding zone(PWZ),melted plug zone(MPZ),and plastic deformation zone(PDZ).The FWZ and the PWZ is the melting bond and diffusion bond between the plug and keyhole,respectively.The MPZ is the center part and the PDZ is upper or lower part of the plug. 展开更多
关键词 friction stir spot welding resistance spot welding KEYHOLE aluminum alloy
下载PDF
Investigation of failure mechanism and mechanical properties of resistance spot welded magnesium alloy joints
20
作者 郎波 孙大千 +1 位作者 马金瑞 赵卓 《China Welding》 EI CAS 2010年第2期75-80,共6页
Resistance .spot u,e/ded magnesium alloy joints can fail in two markedly different failure modes (interfiscialfitilure and button pullout failure) under tensile shear loading conditions. For button pullottt failure,... Resistance .spot u,e/ded magnesium alloy joints can fail in two markedly different failure modes (interfiscialfitilure and button pullout failure) under tensile shear loading conditions. For button pullottt failure, the crack first propagates along cellular dendritic structure of the nugget circumference, and then passes through heat-affected zone (HAZ) and base metal in sequence. The tensile shear load has smaller values under the interracial failure occurring in a small weld nugget as compared to the button pullout failure appearing in a large weld nugget. The tensile shear load increases with the increasing nugget diameter for expulsion free joints. However, for joints which experienced expulsion, the tensile shear load decreases in spite of nugget diameter increasing. Under the equivalent nugget diameter (5. g mm), the tensile shear load of joints with 9 × 10^-4 g KBF4 addition was increased by around 20% as compared to that of joints without KBF4 addition. 展开更多
关键词 resistance spot welding magnesium alloy failure rnechanism mechanical properties
下载PDF
上一页 1 2 27 下一页 到第
使用帮助 返回顶部