Owing to rapid developments in spintronics,spin-based logic devices have emerged as promising tools for next-generation computing technologies.This paper provides a comprehensive review of recent advancements in spin ...Owing to rapid developments in spintronics,spin-based logic devices have emerged as promising tools for next-generation computing technologies.This paper provides a comprehensive review of recent advancements in spin logic devices,particularly focusing on fundamental device concepts rooted in nanomagnets,magnetoresistive random access memory,spin–orbit torques,electric-field modu-lation,and magnetic domain walls.The operation principles of these devices are comprehensively analyzed,and recent progress in spin logic devices based on negative differential resistance-enhanced anomalous Hall effect is summarized.These devices exhibit reconfigur-able logic capabilities and integrate nonvolatile data storage and computing functionalities.For current-driven spin logic devices,negative differential resistance elements are employed to nonlinearly enhance anomalous Hall effect signals from magnetic bits,enabling reconfig-urable Boolean logic operations.Besides,voltage-driven spin logic devices employ another type of negative differential resistance ele-ment to achieve logic functionalities with excellent cascading ability.By cascading several elementary logic gates,the logic circuit of a full adder can be obtained,and the potential of voltage-driven spin logic devices for implementing complex logic functions can be veri-fied.This review contributes to the understanding of the evolving landscape of spin logic devices and underscores the promising pro-spects they offer for the future of emerging computing schemes.展开更多
The electron transport of linear atomic chain trodes was investigated by using the density Green's function method. We have calculated of MgB2 sandwiched between Au(100) elecfunctional theory with the non-equilibri...The electron transport of linear atomic chain trodes was investigated by using the density Green's function method. We have calculated of MgB2 sandwiched between Au(100) elecfunctional theory with the non-equilibrium the corresponding cohesion energy and conductance of junctions in different distance. It is found that, at the equilibrium position, the Au-B bond-length is 1.90 A, the B-Mg bond-length is 2.22 A, and the equilibrium conductance is 0.51G0 (Go=2e^2/h). The transport channel is almost formed by the π antibonding orbitals, which was made up of the Px and Py orbital electrons of B and Mg atoms. In the voltage range of -1.5 to 1.5 V, the junctions show the metallic behaviors. When the voltage is larger than 1.5 V, the current decreases gradually and then negative differential resistance appears almost symmetrically on both positive and negative bias.展开更多
We explore the electronic and transport properties of zigzag graphene nanoribbons (GNRs) with nitrogen-vacancy defects by performing fully self-consistent spin-polarized density functional theory calculations combin...We explore the electronic and transport properties of zigzag graphene nanoribbons (GNRs) with nitrogen-vacancy defects by performing fully self-consistent spin-polarized density functional theory calculations combined with non-equilibrium Green's function technique. We observe robust negative di erential resistance (NDR) effect in all examined molecular junctions. Through analyzing the calculated electronic structures and the bias-dependent transmission coefficients, we find that the narrow density of states of electrodes and the bias-dependent effective coupling between the central molecular orbitals and the electrode subbands are responsible for the observed NDR phenomenon. In addition, the obvious di erence of the transmission spectra of two spin channels is observed in some bias ranges, which leads to the near perfect spin-filtering effect. These theoretical findings imply that GNRs with nitrogenvacancy defects hold great potential for building molecular devices.展开更多
By using first-principles calculations and nonequilibrium Green's function technique, we study elastic transport properties of crossed graphene nanoribbons. The results show that the electronic transport properties o...By using first-principles calculations and nonequilibrium Green's function technique, we study elastic transport properties of crossed graphene nanoribbons. The results show that the electronic transport properties of molecular junctions can be modulated by doped atoms. Negative differential resistance (NDR) behaviour can be observed in a certain bias region, when crossed graphene nanoribbons are doped with nitrogen atoms at the shoulder, but it cannot be observed for pristine crossed graphene nanoribbons at low biases. A mechanism for the negative differential resistance behaviour is suggested.展开更多
By using the first-principle calculations and nonequilibrium Green functions method, the electronic transport properties of molecular devices constructed by C82, C80BN and C80N2 were studied. The results show that the...By using the first-principle calculations and nonequilibrium Green functions method, the electronic transport properties of molecular devices constructed by C82, C80BN and C80N2 were studied. The results show that the electronic transport properties of molecular devices are affected by doped atoms. Negative differential resistance (NDR) behavior can be observed in certain bias regions for C82 and C80BN molecular devices but cannot be observed for C80N2 molecular device. A mechanism for the negative differential resistance behavior was suggested.展开更多
Room-temperature negative differential resistance (NDR) has been observed in different types of organic materials. However, detailed study on the influence of the organic material on NDR performance is still scarce....Room-temperature negative differential resistance (NDR) has been observed in different types of organic materials. However, detailed study on the influence of the organic material on NDR performance is still scarce. In this work, room-temperature NDR & observed when CdSe quantum dot (QD) modified ITO is used as the electrode. Furthermore, material dependence of the NDR performance is observed by selecting materials with different charge transporting properties as the active layer, respectively. A peak-to-valley current ratio up to 9 is observed. It is demonstrated that the injection barrier between ITO and the organic active layer plays a decisive role for the device NDR performance. The influence of the aggregation state of CdSe QDs on the NDR performance is also studied, which indicates that the NDR is caused by the resonant tunneling process in the ITO/CdSe QD/organic active layer structure.展开更多
Nodal-line semimetals have become a research hot-spot due to their novel properties and great potential application in spin electronics. It is more challenging to find 2D nodal-line semimetals that can resist the spin...Nodal-line semimetals have become a research hot-spot due to their novel properties and great potential application in spin electronics. It is more challenging to find 2D nodal-line semimetals that can resist the spin–orbit coupling(SOC)effect. Here, we predict that 2D tetragonal Zn B is a nodal-line semimetal with great transport properties. There are two crossing bands centered on the S point at the Fermi surface without SOC, which are mainly composed of the pxy orbitals of Zn and B atoms and the pz orbitals of the B atom. Therefore, the system presents a nodal line centered on the S point in its Brillouin zone(BZ). And the nodal line is protected by the horizontal mirror symmetry M_(z). We further examine the robustness of a nodal line under biaxial strain by applying up to-4% in-plane compressive strain and 5% tensile strain on the Zn B monolayer, respectively. The transmission along the a direction is significantly stronger than that along the b direction in the conductive channel. The current in the a direction is as high as 26.63 μA at 0.8 V, and that in the b direction reaches 8.68 μA at 0.8 V. It is interesting that the transport characteristics of Zn B show the negative differential resistance(NDR) effect after 0.8 V along the a(b) direction. The results provide an ideal platform for research of fundamental physics of 2D nodal-line fermions and nanoscale spintronics, as well as the design of new quantum devices.展开更多
Nanofluidic devices have turned out to be exemplary systems for investigating fluidic transport properties in a highly restricted area, where the electrostatic interactions or chemical reactions between nanochannel an...Nanofluidic devices have turned out to be exemplary systems for investigating fluidic transport properties in a highly restricted area, where the electrostatic interactions or chemical reactions between nanochannel and flowing species strongly dominate the ions and flow transport. Numerous nanofluidic devices have recently been explored to manipulate ion currents and construct electronic devices. Enlightened by electronic field effect transistors, utilizing the electric field effect of nanopore nanochannels has also been adopted to develop versatile nanofluidic devices. Here, we report a nanopore-based nanofluidic unijunction transistor composed of a conical glass nanopipette with the biomaterial polydopamine (PDA) coated at its outer surface. The asfabricated nanofluidic device exhibited negative differential resistance (NDR) and ion current oscillation (ICO) in ionic transport. The pre-doped copper ions in the PDA moved toward the tip as increasing the potential, having a robust shielding effect on the charge of the tip, thus affecting the surface charge density of the nanopore in the working zone. Finite element simulation based on a continuum model coupled with Stokes-Brinkman and Poisson-Nernst-Planck (PNP) equations revealed that the fluctuations in charge density remarkably affect the transport of ionic current in the nanofluidic device. The as-prepared nanofluidic semiconductor device was a ready-to-use equipment that required no additional external conditions. Our work provides a versatile and convenient way to construct nanofluidic electronic components;we believe by taking advantage of advanced surface modification methods, the oscillation frequency of the unijunction transistors could be controlled on demand, and more nanofluidic devices with resourceful functions would be exploited.展开更多
We demonstrate a high performance GaAs/AlGaAs-based quantum-well photodetector(QWP)device with a peak response frequency of 4.3 THz.The negative differential resistance(NDR)phenomenon is found in the dark currentvolta...We demonstrate a high performance GaAs/AlGaAs-based quantum-well photodetector(QWP)device with a peak response frequency of 4.3 THz.The negative differential resistance(NDR)phenomenon is found in the dark currentvoltage(I-V)curve in the current sweeping measurement mode,from which the breakdown voltage is determined.The photocurrent spectra and blackbody current responsivities at different voltages are measured.Based on the experimental data,the peak responsivity of 0.3 A/W(at 0.15 V,8 K)is derived,and the detection sensitivity is higher than 10^(11)Jones,which is in the similar level as that of the commercialized liquid-helium-cooled silicon bolometers.We attribute the high detection performance of the device to the small ohmic contact resistance of-2Ωand the big breakdown bias.展开更多
In this paper, 1.2 kV, 3.3 kV, and 5.0 kV class 4H-SiC power Schottky barrier diodes (SBDs) are fabricated with three N-type drift layer thickness values of 10 μm, 30μm, and 50 μm, respectively. The avalanche bre...In this paper, 1.2 kV, 3.3 kV, and 5.0 kV class 4H-SiC power Schottky barrier diodes (SBDs) are fabricated with three N-type drift layer thickness values of 10 μm, 30μm, and 50 μm, respectively. The avalanche breakdown capabilities, static and transient characteristics of the fabricated devices are measured in detail and compared with the theoretical pre- dictions. It is found that the experimental results match well with the theoretical calculation results and are very close to the 4H-SiC theoretical limit line. The best achieved breakdown voltages (BVs) of the diodes on the 10 p.m, 30 m, and 50 -tm epilayers are 1400 V, 3320 V, and 5200 V, respectively. Differential specific-on resistances (Ron-sp) are 2.1 m--cm2, 7.34 mO. cm2, and 30.3 m-. cm2, respectively.展开更多
Differential Power Analysis (DPA) is an effective attack method to break the crypto chips and it has been considered to be a threat to security of information system. With analyzing the prin-ciple of resisting DPA,an ...Differential Power Analysis (DPA) is an effective attack method to break the crypto chips and it has been considered to be a threat to security of information system. With analyzing the prin-ciple of resisting DPA,an available countermeasure based on randomization is proposed in this paper. Time delay is inserted in the operation process and random number is precharged to the circuit during the delay time,the normal schedule is disturbed and the power is randomized. Following this meth-odology,a general DPA resistance random precharge architecture is proposed and DES algorithm following this architecture is implemented. This countermeasure is testified to be efficient to resist DPA.展开更多
By using nonequilibrium Green's function method and first-principles calculations, the electronic transport properties of doped C60 molecular devices were investigated. It is revealed that the C60 molecular devices s...By using nonequilibrium Green's function method and first-principles calculations, the electronic transport properties of doped C60 molecular devices were investigated. It is revealed that the C60 molecular devices show the metal behavior due to the interaction between the C60 molecule and the metal electrode. The current-voltage curve displays a linear behavior at low bias, and the currents have the relation of MI〉M3〉M4〉M2 when the bias voltage is lower than 0.6 V. Electronic transport properties are affected greatly by the doped atoms. Negative differential resistance is found in a certain bias range for C60 and C58BN molecular devices, but cannot be observed in C59B and C59N molecular devices. These unconventional effects can be used to design novel nanoelectronic devices.展开更多
AlN/GaN resonant tunneling diodes(RTDs)were grown separately on freestanding Ga N(FS-GaN)substrates and sapphire substrates by plasma-assisted molecular-beam epitaxy(PA-MBE).Room temperature negative differential resi...AlN/GaN resonant tunneling diodes(RTDs)were grown separately on freestanding Ga N(FS-GaN)substrates and sapphire substrates by plasma-assisted molecular-beam epitaxy(PA-MBE).Room temperature negative differential resistance(NDR)was obtained under forward bias for the RTDs grown on FS-GaN substrates,with the peak current densities(Jp)of 175-700 kA/cm^(2)and peak-to-valley current ratios(PVCRs)of 1.01-1.21.Two resonant peaks were also observed for some RTDs at room temperature.The effects of two types of substrates on epitaxy quality and device performance of GaN-based RTDs were firstly investigated systematically,showing that lower dislocation densities,flatter surface morphology,and steeper heterogeneous interfaces were the key factors to achieving NDR for RTDs.展开更多
Exploring silicon-based spin modulating junction is one of the most promising areas of spintronics.Using nonequilibrium Green's function combined with density functional theory,a set of spin filters of hydrogenate...Exploring silicon-based spin modulating junction is one of the most promising areas of spintronics.Using nonequilibrium Green's function combined with density functional theory,a set of spin filters of hydrogenated zigzag silicene nanoribbons is designed by substituting a silicon atom with a boron one and the spin-correlated transport properties are studied.The results show that the spin polarization can be realized by structural symmetry breaking induced by boron doping.Remarkably,by tuning the edge hydrogenation,it is found that the spin filter efficiency can be varied from 30%to 58%.Moreover,it is also found and explained that the asymmetric hydrogenation can give rise to an obvious negative differential resistance which usually appears at weakly coupled junction.These findings indicate that the boron-doped ZSiNR is a promising material for spintronic applications.展开更多
Material structures and device structures of a 100-GHz InP based transferred-electron device are designed in this paper. In order to successfully fabricate the Gunn devices operating at 100 GHz, the InP substrate was ...Material structures and device structures of a 100-GHz InP based transferred-electron device are designed in this paper. In order to successfully fabricate the Gunn devices operating at 100 GHz, the InP substrate was entirely removed by mechanical thinning and wet etching. The Gunn device was connected to a tripler link and a high RF (radio frequency) output with power of 2 mW working at 300 GHz was obtained, which is high enough for applications in current military electronic systems.展开更多
In this article, the spin-dependent electronic and transport properties of the armchair boron–phosphorous nanoribbons(ABPNRs) are mainly studied by using the non-equilibrium Green function method combined with the ...In this article, the spin-dependent electronic and transport properties of the armchair boron–phosphorous nanoribbons(ABPNRs) are mainly studied by using the non-equilibrium Green function method combined with the spin-polarized density function theory. Our calculated electronic structures indicate that the edge hydrogenated ABPNRs exhibit a ferromagnetic bipolar magnetic semiconductor property, and that the Si atom doping can make ABPNRs convert into up-spin dominated half metal. The spin-resolved transport property results show that the doped devices can realize 100% spinfiltering function, and that the interesting negative differential resistance phenomenon can be observed. Our calculations suggest that the ABPNRs can be constructed as a spin heterojunction by introducing Si doping partially, and it would be used as a spin-diode for nano-spintronics in future.展开更多
Graphene is mainly implemented by these methods: exfoliating, unzipping of carbon nanotubes, chemical vapour deposition, epitaxial growth and the reduction of graphene oxide. The latter option has the advantage of low...Graphene is mainly implemented by these methods: exfoliating, unzipping of carbon nanotubes, chemical vapour deposition, epitaxial growth and the reduction of graphene oxide. The latter option has the advantage of low cost and precision. However, reduced graphene oxide(rGO) contains hydrogen and/or oxygen atoms hence the structure and properties of the rGO and intrinsic graphene are different. Considering the advantages of the implementation and utilization of rGO, voltage-dependent electronic transport properties of several rGO samples with various coverage ratios are investigated in this work. Ab initio simulations based on density functional theory combined with non-equilibrium Green's function formalism are used to obtain the current–voltage characteristics and the voltage-dependent transmission spectra of rGO samples. It is shown that the transport properties of rGO are strongly dependent on the coverage ratio. Obtained results indicate that some of the rGO samples have negative differential resistance characteristics while normally insulating rGO can behave as conducting beyond a certain threshold voltage. The reasons of the peculiar electronic transport behaviour of rGO samples are further investigated, taking the transmission eigenstates and their localization degree into consideration.The findings of this study are expected to be helpful for engineering the characteristics of rGO structures.展开更多
Introduction Atherosclerosis is a potentially life-threatening disease of large arteries that is strongly associated with systemic risk factors such as hypercholesterolemia,hypertension,smoking,and diabetes. However,a...Introduction Atherosclerosis is a potentially life-threatening disease of large arteries that is strongly associated with systemic risk factors such as hypercholesterolemia,hypertension,smoking,and diabetes. However,atherosclerosis develops as a展开更多
Tunneling field effect transistors(TFETs) based on two-dimensional materials are promising contenders to the traditional metal oxide semiconductor field effect transistor, mainly due to potential applications in low...Tunneling field effect transistors(TFETs) based on two-dimensional materials are promising contenders to the traditional metal oxide semiconductor field effect transistor, mainly due to potential applications in low power devices. Here,we investigate the TFETs based on two different integration types: in-plane and vertical heterostructures composed of two kinds of layered phosphorous(β-P and δ-P) by ab initio quantum transport simulations. NDR effects have been observed in both in-plane and vertical heterostructures, and the effects become significant with the highest peak-to-valley ratio(PVR)when the intrinsic region length is near zero. Compared with the in-plane TFET based on β-P and δ-P, better performance with a higher on/off current ratio of - 10-6 and a steeper subthreshold swing(SS) of - 23 mV/dec is achieved in the vertical TFET. Such differences in the NDR effects, on/off current ratio and SS are attributed to the distinct interaction nature of theβ-P and δ-P layers in the in-plane and vertical heterostructures.展开更多
Developing emerging technologies in Internet of Things and artificial intelligence requires high-speed, low-power, high-sensitivity, and switchable-functionality strain sensors capable of sensing subtle mechanical sti...Developing emerging technologies in Internet of Things and artificial intelligence requires high-speed, low-power, high-sensitivity, and switchable-functionality strain sensors capable of sensing subtle mechanical stimuli in complex ambience. Resonant tunneling diodes (RTDs) are the good candidate for such sensing applications due to the ultrafast transport process, lower tunneling current, and negative differential resistance. However, notably enhancing sensing sensitivity remains one of the greatest challenges for RTD-related strain sensors. Here, we use piezotronic effect to improve sensing performance of strain sensors in double-barrier ZnO nanowire RTDs. This strain sensor not only possesses an ultrahigh gauge factor (GF) 390 GPa^(−1), two orders of magnitude higher than these reported RTD-based strain sensors, but also can switch the sensitivity with a GF ratio of 160 by adjusting bias voltage in a small range of 0.2 V. By employing Landauer–Büttiker quantum transport theory, we uncover two primary factors governing piezotronic modulation of resonant tunneling transport, i.e., the strain-mediated polarization field for manipulation of quantized subband levels, and the interfacial polarization charges for adjustment of space charge region. These two mechanisms enable strain to induce the negative differential resistance, amplify the peak-valley current ratio, and diminish the resonant bias voltage. These performances can be engineered by the regulation of bias voltage, temperature, and device architectures. Moreover, a strain sensor capable of electrically switching sensing performance within sensitive and insensitive regimes is proposed. This study not only offers a deep insight into piezotronic modulation of resonant tunneling physics, but also advances the RTD towards highly sensitive and multifunctional sensor applications.展开更多
基金sponsored by the National Key Research and Development Program of China(Nos.2017YFA0206202 and 2022YFA1203904)the National Natural Science Foundation of China(No.52271160).
文摘Owing to rapid developments in spintronics,spin-based logic devices have emerged as promising tools for next-generation computing technologies.This paper provides a comprehensive review of recent advancements in spin logic devices,particularly focusing on fundamental device concepts rooted in nanomagnets,magnetoresistive random access memory,spin–orbit torques,electric-field modu-lation,and magnetic domain walls.The operation principles of these devices are comprehensively analyzed,and recent progress in spin logic devices based on negative differential resistance-enhanced anomalous Hall effect is summarized.These devices exhibit reconfigur-able logic capabilities and integrate nonvolatile data storage and computing functionalities.For current-driven spin logic devices,negative differential resistance elements are employed to nonlinearly enhance anomalous Hall effect signals from magnetic bits,enabling reconfig-urable Boolean logic operations.Besides,voltage-driven spin logic devices employ another type of negative differential resistance ele-ment to achieve logic functionalities with excellent cascading ability.By cascading several elementary logic gates,the logic circuit of a full adder can be obtained,and the potential of voltage-driven spin logic devices for implementing complex logic functions can be veri-fied.This review contributes to the understanding of the evolving landscape of spin logic devices and underscores the promising pro-spects they offer for the future of emerging computing schemes.
基金V. ACKNOWLEDGMENTS This work was supported by the National Natural Science Foundation of China (No.11174214 and No.11204192), the Research Project of Education Department in Sichuan Province (No.13ZB0207), and Scientific Research Project of Yibin University (No.2013YY05).
文摘The electron transport of linear atomic chain trodes was investigated by using the density Green's function method. We have calculated of MgB2 sandwiched between Au(100) elecfunctional theory with the non-equilibrium the corresponding cohesion energy and conductance of junctions in different distance. It is found that, at the equilibrium position, the Au-B bond-length is 1.90 A, the B-Mg bond-length is 2.22 A, and the equilibrium conductance is 0.51G0 (Go=2e^2/h). The transport channel is almost formed by the π antibonding orbitals, which was made up of the Px and Py orbital electrons of B and Mg atoms. In the voltage range of -1.5 to 1.5 V, the junctions show the metallic behaviors. When the voltage is larger than 1.5 V, the current decreases gradually and then negative differential resistance appears almost symmetrically on both positive and negative bias.
基金This work was partially supported by the National Natural Science Foundation of China (No.20903003 and No.21273208), the Anhui Provincial Natural Science Foundation (No.1408085QB26), the China Postdoctoral Science Foundation (No.2012M511409), the Supercomputer Center of Chinese Academy of Sciences, and University of Science and Technology of China and Shanghai Supercomputer Centers.
文摘We explore the electronic and transport properties of zigzag graphene nanoribbons (GNRs) with nitrogen-vacancy defects by performing fully self-consistent spin-polarized density functional theory calculations combined with non-equilibrium Green's function technique. We observe robust negative di erential resistance (NDR) effect in all examined molecular junctions. Through analyzing the calculated electronic structures and the bias-dependent transmission coefficients, we find that the narrow density of states of electrodes and the bias-dependent effective coupling between the central molecular orbitals and the electrode subbands are responsible for the observed NDR phenomenon. In addition, the obvious di erence of the transmission spectra of two spin channels is observed in some bias ranges, which leads to the near perfect spin-filtering effect. These theoretical findings imply that GNRs with nitrogenvacancy defects hold great potential for building molecular devices.
基金supported by the National Natural Science Foundation of China (Grant Nos.10325415 and 50504017)the Natural Science Foundation of Hunan Province,China (Grant No.07JJ3102)the Science Develop Foundation of Central South University,China (Grant Nos.08SDF02 and 09SDF09)
文摘By using first-principles calculations and nonequilibrium Green's function technique, we study elastic transport properties of crossed graphene nanoribbons. The results show that the electronic transport properties of molecular junctions can be modulated by doped atoms. Negative differential resistance (NDR) behaviour can be observed in a certain bias region, when crossed graphene nanoribbons are doped with nitrogen atoms at the shoulder, but it cannot be observed for pristine crossed graphene nanoribbons at low biases. A mechanism for the negative differential resistance behaviour is suggested.
基金Project(50721003)supported by the National Natural Science Foundation of ChinaProject(10C1171)supported by the Scientific Research Fund of Hunan Provincial Education Department,ChinaProject(11JJ3073)supported by the Natural Science Foundation of Hunan Province,China
文摘By using the first-principle calculations and nonequilibrium Green functions method, the electronic transport properties of molecular devices constructed by C82, C80BN and C80N2 were studied. The results show that the electronic transport properties of molecular devices are affected by doped atoms. Negative differential resistance (NDR) behavior can be observed in certain bias regions for C82 and C80BN molecular devices but cannot be observed for C80N2 molecular device. A mechanism for the negative differential resistance behavior was suggested.
基金Supported by the National Natural Science Foundation of China under Grant Nos 61106123 and 61275034the National Basic Research Program of China under Grant No 2013CB328705
文摘Room-temperature negative differential resistance (NDR) has been observed in different types of organic materials. However, detailed study on the influence of the organic material on NDR performance is still scarce. In this work, room-temperature NDR & observed when CdSe quantum dot (QD) modified ITO is used as the electrode. Furthermore, material dependence of the NDR performance is observed by selecting materials with different charge transporting properties as the active layer, respectively. A peak-to-valley current ratio up to 9 is observed. It is demonstrated that the injection barrier between ITO and the organic active layer plays a decisive role for the device NDR performance. The influence of the aggregation state of CdSe QDs on the NDR performance is also studied, which indicates that the NDR is caused by the resonant tunneling process in the ITO/CdSe QD/organic active layer structure.
基金Project supported by the Natural Science Foundation of Shandong Province, China (Grant No. ZR2019MA041)Taishan Scholar Project of Shandong Province, China (Grant No. ts20190939)the National Natural Science Foundation of China (Grant No. 62071200)。
文摘Nodal-line semimetals have become a research hot-spot due to their novel properties and great potential application in spin electronics. It is more challenging to find 2D nodal-line semimetals that can resist the spin–orbit coupling(SOC)effect. Here, we predict that 2D tetragonal Zn B is a nodal-line semimetal with great transport properties. There are two crossing bands centered on the S point at the Fermi surface without SOC, which are mainly composed of the pxy orbitals of Zn and B atoms and the pz orbitals of the B atom. Therefore, the system presents a nodal line centered on the S point in its Brillouin zone(BZ). And the nodal line is protected by the horizontal mirror symmetry M_(z). We further examine the robustness of a nodal line under biaxial strain by applying up to-4% in-plane compressive strain and 5% tensile strain on the Zn B monolayer, respectively. The transmission along the a direction is significantly stronger than that along the b direction in the conductive channel. The current in the a direction is as high as 26.63 μA at 0.8 V, and that in the b direction reaches 8.68 μA at 0.8 V. It is interesting that the transport characteristics of Zn B show the negative differential resistance(NDR) effect after 0.8 V along the a(b) direction. The results provide an ideal platform for research of fundamental physics of 2D nodal-line fermions and nanoscale spintronics, as well as the design of new quantum devices.
基金supported by the National Natural Science Foundation of China(Nos.22374145 and 21675146)the Jilin Province Science Technology Development Plan Project(No.20230508075RC)the Youth Innovation Promotion Association CAS(No.2021224).
文摘Nanofluidic devices have turned out to be exemplary systems for investigating fluidic transport properties in a highly restricted area, where the electrostatic interactions or chemical reactions between nanochannel and flowing species strongly dominate the ions and flow transport. Numerous nanofluidic devices have recently been explored to manipulate ion currents and construct electronic devices. Enlightened by electronic field effect transistors, utilizing the electric field effect of nanopore nanochannels has also been adopted to develop versatile nanofluidic devices. Here, we report a nanopore-based nanofluidic unijunction transistor composed of a conical glass nanopipette with the biomaterial polydopamine (PDA) coated at its outer surface. The asfabricated nanofluidic device exhibited negative differential resistance (NDR) and ion current oscillation (ICO) in ionic transport. The pre-doped copper ions in the PDA moved toward the tip as increasing the potential, having a robust shielding effect on the charge of the tip, thus affecting the surface charge density of the nanopore in the working zone. Finite element simulation based on a continuum model coupled with Stokes-Brinkman and Poisson-Nernst-Planck (PNP) equations revealed that the fluctuations in charge density remarkably affect the transport of ionic current in the nanofluidic device. The as-prepared nanofluidic semiconductor device was a ready-to-use equipment that required no additional external conditions. Our work provides a versatile and convenient way to construct nanofluidic electronic components;we believe by taking advantage of advanced surface modification methods, the oscillation frequency of the unijunction transistors could be controlled on demand, and more nanofluidic devices with resourceful functions would be exploited.
基金Project supported by the National Key R&D Program of China(Grant No.2017YFF0106302)the National Basic Research Program of of China(Grant No.2014CB339803)+1 种基金the National Natural Science Foundation of China(Grant Nos.61404150,61405233,and 61604161)the Shanghai Municipal Commission of Science and Technology,China(Grant Nos.15JC1403800,17ZR1448300,and 17YF1429900)
文摘We demonstrate a high performance GaAs/AlGaAs-based quantum-well photodetector(QWP)device with a peak response frequency of 4.3 THz.The negative differential resistance(NDR)phenomenon is found in the dark currentvoltage(I-V)curve in the current sweeping measurement mode,from which the breakdown voltage is determined.The photocurrent spectra and blackbody current responsivities at different voltages are measured.Based on the experimental data,the peak responsivity of 0.3 A/W(at 0.15 V,8 K)is derived,and the detection sensitivity is higher than 10^(11)Jones,which is in the similar level as that of the commercialized liquid-helium-cooled silicon bolometers.We attribute the high detection performance of the device to the small ohmic contact resistance of-2Ωand the big breakdown bias.
基金supported by the National Natural Science Foundation of China(Grant Nos.61404098,61176070,and 61274079)the Doctoral Fund of Ministry of Education of China(Grant Nos.20110203110010 and 20130203120017)+1 种基金the National Key Basic Research Program of China(Grant No.2015CB759600)the Key Specific Projects of Ministry of Education of China(Grant No.625010101)
文摘In this paper, 1.2 kV, 3.3 kV, and 5.0 kV class 4H-SiC power Schottky barrier diodes (SBDs) are fabricated with three N-type drift layer thickness values of 10 μm, 30μm, and 50 μm, respectively. The avalanche breakdown capabilities, static and transient characteristics of the fabricated devices are measured in detail and compared with the theoretical pre- dictions. It is found that the experimental results match well with the theoretical calculation results and are very close to the 4H-SiC theoretical limit line. The best achieved breakdown voltages (BVs) of the diodes on the 10 p.m, 30 m, and 50 -tm epilayers are 1400 V, 3320 V, and 5200 V, respectively. Differential specific-on resistances (Ron-sp) are 2.1 m--cm2, 7.34 mO. cm2, and 30.3 m-. cm2, respectively.
文摘Differential Power Analysis (DPA) is an effective attack method to break the crypto chips and it has been considered to be a threat to security of information system. With analyzing the prin-ciple of resisting DPA,an available countermeasure based on randomization is proposed in this paper. Time delay is inserted in the operation process and random number is precharged to the circuit during the delay time,the normal schedule is disturbed and the power is randomized. Following this meth-odology,a general DPA resistance random precharge architecture is proposed and DES algorithm following this architecture is implemented. This countermeasure is testified to be efficient to resist DPA.
基金Project(07JJ3102) supported by the Natural Science Foundation of Hunan Province, ChinaProject(1343-74236000006) supported by the Graduate Foundation of Hunan Province, ChinaProject(11MY20) supported by the Mittal Entrepreneurship Program of China
文摘By using nonequilibrium Green's function method and first-principles calculations, the electronic transport properties of doped C60 molecular devices were investigated. It is revealed that the C60 molecular devices show the metal behavior due to the interaction between the C60 molecule and the metal electrode. The current-voltage curve displays a linear behavior at low bias, and the currents have the relation of MI〉M3〉M4〉M2 when the bias voltage is lower than 0.6 V. Electronic transport properties are affected greatly by the doped atoms. Negative differential resistance is found in a certain bias range for C60 and C58BN molecular devices, but cannot be observed in C59B and C59N molecular devices. These unconventional effects can be used to design novel nanoelectronic devices.
基金Project supported by the National Key R&D Program of China(Grant No.2018YFB0406600)the National Natural Science Foundation of China(Grant Nos.61875224,61804163,and 61827823)+2 种基金Key Laboratory of Microelectronic Devices and Integration Technology,Chinese Academy of Sciences(Grant No.Y9TAQ21)Key Laboratory of Nano-devices and Applications,Chinese Academy of Sciences(Grant No.Y8AAQ21001)Guangxi Key Laboratory of Precision Navigation Technology and Application,Guilin University of Electronic Technology(Grant No.DH202011)。
文摘AlN/GaN resonant tunneling diodes(RTDs)were grown separately on freestanding Ga N(FS-GaN)substrates and sapphire substrates by plasma-assisted molecular-beam epitaxy(PA-MBE).Room temperature negative differential resistance(NDR)was obtained under forward bias for the RTDs grown on FS-GaN substrates,with the peak current densities(Jp)of 175-700 kA/cm^(2)and peak-to-valley current ratios(PVCRs)of 1.01-1.21.Two resonant peaks were also observed for some RTDs at room temperature.The effects of two types of substrates on epitaxy quality and device performance of GaN-based RTDs were firstly investigated systematically,showing that lower dislocation densities,flatter surface morphology,and steeper heterogeneous interfaces were the key factors to achieving NDR for RTDs.
基金the National Natural Science Foundations of China(Grant No.11574118)the Natural Science Foundation of Shandong Province,China(Grant No.ZR2019PEM006).
文摘Exploring silicon-based spin modulating junction is one of the most promising areas of spintronics.Using nonequilibrium Green's function combined with density functional theory,a set of spin filters of hydrogenated zigzag silicene nanoribbons is designed by substituting a silicon atom with a boron one and the spin-correlated transport properties are studied.The results show that the spin polarization can be realized by structural symmetry breaking induced by boron doping.Remarkably,by tuning the edge hydrogenation,it is found that the spin filter efficiency can be varied from 30%to 58%.Moreover,it is also found and explained that the asymmetric hydrogenation can give rise to an obvious negative differential resistance which usually appears at weakly coupled junction.These findings indicate that the boron-doped ZSiNR is a promising material for spintronic applications.
基金Project supported by the Main Direction Program of Knowledge Innovation of the Chinese Academy of Sciences(Grant No.2A2011YYYJ-1123)
文摘Material structures and device structures of a 100-GHz InP based transferred-electron device are designed in this paper. In order to successfully fabricate the Gunn devices operating at 100 GHz, the InP substrate was entirely removed by mechanical thinning and wet etching. The Gunn device was connected to a tripler link and a high RF (radio frequency) output with power of 2 mW working at 300 GHz was obtained, which is high enough for applications in current military electronic systems.
基金Project supported by the National Natural Science Foundation of China(Grant No.21673296)the Hunan Provincial Natural Science Foundation of China(Grant No.2018JJ2481)the Fundamental Research Funds for the Central Universities of Central South University,China(Grant No.2018zzts328)
文摘In this article, the spin-dependent electronic and transport properties of the armchair boron–phosphorous nanoribbons(ABPNRs) are mainly studied by using the non-equilibrium Green function method combined with the spin-polarized density function theory. Our calculated electronic structures indicate that the edge hydrogenated ABPNRs exhibit a ferromagnetic bipolar magnetic semiconductor property, and that the Si atom doping can make ABPNRs convert into up-spin dominated half metal. The spin-resolved transport property results show that the doped devices can realize 100% spinfiltering function, and that the interesting negative differential resistance phenomenon can be observed. Our calculations suggest that the ABPNRs can be constructed as a spin heterojunction by introducing Si doping partially, and it would be used as a spin-diode for nano-spintronics in future.
文摘Graphene is mainly implemented by these methods: exfoliating, unzipping of carbon nanotubes, chemical vapour deposition, epitaxial growth and the reduction of graphene oxide. The latter option has the advantage of low cost and precision. However, reduced graphene oxide(rGO) contains hydrogen and/or oxygen atoms hence the structure and properties of the rGO and intrinsic graphene are different. Considering the advantages of the implementation and utilization of rGO, voltage-dependent electronic transport properties of several rGO samples with various coverage ratios are investigated in this work. Ab initio simulations based on density functional theory combined with non-equilibrium Green's function formalism are used to obtain the current–voltage characteristics and the voltage-dependent transmission spectra of rGO samples. It is shown that the transport properties of rGO are strongly dependent on the coverage ratio. Obtained results indicate that some of the rGO samples have negative differential resistance characteristics while normally insulating rGO can behave as conducting beyond a certain threshold voltage. The reasons of the peculiar electronic transport behaviour of rGO samples are further investigated, taking the transmission eigenstates and their localization degree into consideration.The findings of this study are expected to be helpful for engineering the characteristics of rGO structures.
基金support from National Heart Lung and Blood Institute Grants P50-HL56985 and R01-HL61794
文摘Introduction Atherosclerosis is a potentially life-threatening disease of large arteries that is strongly associated with systemic risk factors such as hypercholesterolemia,hypertension,smoking,and diabetes. However,atherosclerosis develops as a
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11604019,61574020,and 61376018)the Ministry of Science and Technology of China(Grant No.2016YFA0301300)+1 种基金the Fund of State Key Laboratory of Information Photonics and Optical Communications(Beijing University of Posts and Telecommunications),Chinathe Fundamental Research Funds for the Central Universities,China(Grant No.2016RCGD22)
文摘Tunneling field effect transistors(TFETs) based on two-dimensional materials are promising contenders to the traditional metal oxide semiconductor field effect transistor, mainly due to potential applications in low power devices. Here,we investigate the TFETs based on two different integration types: in-plane and vertical heterostructures composed of two kinds of layered phosphorous(β-P and δ-P) by ab initio quantum transport simulations. NDR effects have been observed in both in-plane and vertical heterostructures, and the effects become significant with the highest peak-to-valley ratio(PVR)when the intrinsic region length is near zero. Compared with the in-plane TFET based on β-P and δ-P, better performance with a higher on/off current ratio of - 10-6 and a steeper subthreshold swing(SS) of - 23 mV/dec is achieved in the vertical TFET. Such differences in the NDR effects, on/off current ratio and SS are attributed to the distinct interaction nature of theβ-P and δ-P layers in the in-plane and vertical heterostructures.
基金supported from the National Natural Science Foundation of China(No.62404125)the Hubei Provincial Natural Science Foundation of China(No.2024AFB359)+5 种基金the Yichang City Natural Science Foundation of China(No.A24-3-004)the China Three Gorges University(No.2023RCKJ0035)the Basic Research Programs of Taicang,2021(No.TC2021JC20)the China Postdoctoral Science Foundation(No.2022M722588)the Young Talent Fund of Xi’an Association for Science and Technology(No.959202313090)the Key Research and Development Projects of Shaanxi Province(No.2024GX-YBXM-029).
文摘Developing emerging technologies in Internet of Things and artificial intelligence requires high-speed, low-power, high-sensitivity, and switchable-functionality strain sensors capable of sensing subtle mechanical stimuli in complex ambience. Resonant tunneling diodes (RTDs) are the good candidate for such sensing applications due to the ultrafast transport process, lower tunneling current, and negative differential resistance. However, notably enhancing sensing sensitivity remains one of the greatest challenges for RTD-related strain sensors. Here, we use piezotronic effect to improve sensing performance of strain sensors in double-barrier ZnO nanowire RTDs. This strain sensor not only possesses an ultrahigh gauge factor (GF) 390 GPa^(−1), two orders of magnitude higher than these reported RTD-based strain sensors, but also can switch the sensitivity with a GF ratio of 160 by adjusting bias voltage in a small range of 0.2 V. By employing Landauer–Büttiker quantum transport theory, we uncover two primary factors governing piezotronic modulation of resonant tunneling transport, i.e., the strain-mediated polarization field for manipulation of quantized subband levels, and the interfacial polarization charges for adjustment of space charge region. These two mechanisms enable strain to induce the negative differential resistance, amplify the peak-valley current ratio, and diminish the resonant bias voltage. These performances can be engineered by the regulation of bias voltage, temperature, and device architectures. Moreover, a strain sensor capable of electrically switching sensing performance within sensitive and insensitive regimes is proposed. This study not only offers a deep insight into piezotronic modulation of resonant tunneling physics, but also advances the RTD towards highly sensitive and multifunctional sensor applications.