The electronic and transport characteristics of protonated derivatives of naphthalocyanine(Nc)were investigated using density functional theory and non-equilibrium Green's functions.The results indicate that the p...The electronic and transport characteristics of protonated derivatives of naphthalocyanine(Nc)were investigated using density functional theory and non-equilibrium Green's functions.The results indicate that the protonation of external meso-N atoms of Nc preserves its planar structure and is energetically more favorable than the protonation of internal isoindole-N atoms.The protonation shifts the energy levels of system's frontier molecular orbitals closer to the Fermi level,thus creating channels for electron transport.In contrast with the semiconductor transport properties of H2Nc,its protonation products respond more sensitively to bias and exhibit negative differential resistance phenomena at specific bias.展开更多
We obtained the output characteristics in wurtzite Al0.15Ga0.85N/GaN MODFETs with the full band Monte Carlo method. The gate length Lg and the channel length Los in the device are 0.2 μm and 0.4 urn, respectively. In...We obtained the output characteristics in wurtzite Al0.15Ga0.85N/GaN MODFETs with the full band Monte Carlo method. The gate length Lg and the channel length Los in the device are 0.2 μm and 0.4 urn, respectively. In the output characteristics we found a differential negative resistance effect. That is, as VDS is a constant, initially, VDS increases with increasing VDS. When VDS exceeds a certain critical value, IDS decreases with increasing VDS. The analysis for velocity-field characteristics in wurtzite CaN, the distributions of the electric field and the electron velocity in the two dimensional electron gas channel indicates that the differential negative resistance effect of the electron average velocity results in the differential negative resistance effect of the output characteristics. The transient transport also is related to the differential negative resistance effect of the output characteristics. This effect only can be observed in the devices with very short channel.展开更多
The time zero dielectric breakdown characteristics of MOSCAP with ultra-thin EOT high-k metal gate stacks are studied. The TZDB results show an abnormal area dependence due to the series resistance effect. The series ...The time zero dielectric breakdown characteristics of MOSCAP with ultra-thin EOT high-k metal gate stacks are studied. The TZDB results show an abnormal area dependence due to the series resistance effect. The series resistance components extracted from the Fowler-Nordheim tunneling relation are attributed to the spreading resistance due to the asymmetry electrodes. Based on a series model to eliminate the series resistance effect, an area acceleration dependence is obtained by correcting the TZDB results. The area dependence follows Poisson area scaling rules, which indicates that the mechanism of TZDB is the same as TDDB and could be considered as a trap generation process.展开更多
A three-dimensional direct simulation of an immersed solid particle approaching another particle, or a flat wall, is conducted to investigate the mechanics of hydrodynamic impact of immersed particles. The simulation ...A three-dimensional direct simulation of an immersed solid particle approaching another particle, or a flat wall, is conducted to investigate the mechanics of hydrodynamic impact of immersed particles. The simulation method is based on a modified immersed boundary method using a fixed grid system. When the particle separation distance becomes smaller than grid spacing, to account for the hydrodynamic resistance effect of liquid layer between particles near contact, a microlayer model is developed to allow determination of the pressure profile within the micro-layer without neglecting the inertial force of the layer flow. The pressure force is then taken into account in equation of particle motion. Comparisons of the simulation results with the experimental results reported in the literature are shown to substantiate the model presented in this study. The simulations reveal the complex three-dimensional flow field of the liquid and the motion of the approaching particle. The fluid pressure in the gap caused by the unsteady motion of the particle is significantly increased when the separation distance of particles is less than about one-tenth diameters of particle. Therefore the velocity of approaching particle starts to decrease due to the hydrodynamic resistance force at this position.展开更多
Nitriding is employed for the hard Fe electrodeposition to produce a hard-facing and antiwear coating. It only takes 1 h for the hard Fe coating, which is much shorter than nitriding the Fe and steel. The results show...Nitriding is employed for the hard Fe electrodeposition to produce a hard-facing and antiwear coating. It only takes 1 h for the hard Fe coating, which is much shorter than nitriding the Fe and steel. The results showed that the nitriding can increase the microhardness, wear resistance of the coating, as well as the bonding strength of the coating with the substrate. Additionally it can eliminate the brittleness, turn the internal stress of the coating from tension to compression. The wear resistance of the nitrided Fe coating is 4.6 times as high as that of Cr coating. It is simple and economic to combine hard Fe electroplating and nitriding, which is a good technology of the tribological surface modification.展开更多
According to the analysis of 654 soil samples collected from 45 counties in Zhejiang Provence, 73.7% of paddy field showed Si deficient. During 1991 and 1993, in Lishi, Longquang, Qingtian and Tonglu Counties, field e...According to the analysis of 654 soil samples collected from 45 counties in Zhejiang Provence, 73.7% of paddy field showed Si deficient. During 1991 and 1993, in Lishi, Longquang, Qingtian and Tonglu Counties, field experiments were conducted to test the effects of basal or additional Si-fertilizer on rice. Si-fertilizer was produced by Nanjing Inorganic Chemical Manufacture, containing 50% water solu展开更多
We analyzed the resistant inheritance of ajaponica variety,Jia23,to two bacterial blightpathogen strains,KS-6-6 and Zhe 173,rep-resenting respectively the two predominantpathogenic types(Ⅱ and Ⅳ)in the rice crop-pin...We analyzed the resistant inheritance of ajaponica variety,Jia23,to two bacterial blightpathogen strains,KS-6-6 and Zhe 173,rep-resenting respectively the two predominantpathogenic types(Ⅱ and Ⅳ)in the rice crop-ping area along the Yangtze River Valley.Jia23 was crossed with susceptible vari-eties,Ewan8 and 7416.Fplants were back-展开更多
Salicylic acid(SA)is an endogenous regulatorymolecule for plant flowering and thermogene-sis,and has been reported as a signal moleculeof plant disease resistance in the plant-pathogen interaction.Exogenous SA is capa...Salicylic acid(SA)is an endogenous regulatorymolecule for plant flowering and thermogene-sis,and has been reported as a signal moleculeof plant disease resistance in the plant-pathogen interaction.Exogenous SA is capableof inducing disease resistance in a wide range ofplants.This study was to evaluate the poten-tial for SA to induce resistance of rice seedlings展开更多
The diffusive boundary layer (DBL) is the zone for matter exchange between surface water and aquatic sediments. To elucidate the influence of DBL on salt release from saline sediments to freshwater, two experiments ...The diffusive boundary layer (DBL) is the zone for matter exchange between surface water and aquatic sediments. To elucidate the influence of DBL on salt release from saline sediments to freshwater, two experiments with or without wind blowing were conducted. According to the experiments, a 3.5 cm DBL is formed above the smoothed sediments at a steady wind field and this thickness is greater than other studies. The observed flux of salt through the DBL is 6% larger than the calculated value from Fick' s first law. The results indicate that molecular diffusion is the dominant mechanism for salt transport through the DBL. The presence of DBL suppresses the hydrodynamic enhancement for matter exchange between sediments and overlying water. Therefore, salts in the sediments of a polder reservoir may influence the water quality chronically.展开更多
Tunneling field effect transistors(TFETs) based on two-dimensional materials are promising contenders to the traditional metal oxide semiconductor field effect transistor, mainly due to potential applications in low...Tunneling field effect transistors(TFETs) based on two-dimensional materials are promising contenders to the traditional metal oxide semiconductor field effect transistor, mainly due to potential applications in low power devices. Here,we investigate the TFETs based on two different integration types: in-plane and vertical heterostructures composed of two kinds of layered phosphorous(β-P and δ-P) by ab initio quantum transport simulations. NDR effects have been observed in both in-plane and vertical heterostructures, and the effects become significant with the highest peak-to-valley ratio(PVR)when the intrinsic region length is near zero. Compared with the in-plane TFET based on β-P and δ-P, better performance with a higher on/off current ratio of - 10-6 and a steeper subthreshold swing(SS) of - 23 mV/dec is achieved in the vertical TFET. Such differences in the NDR effects, on/off current ratio and SS are attributed to the distinct interaction nature of theβ-P and δ-P layers in the in-plane and vertical heterostructures.展开更多
An immature pinecone shaped hierarchically structured zirconia (ZrO2-ipch) and a cobblestone-like zirconia nanoparticulate (ZrO2-cs), both with the monoclinic phase (m-phase), were synthesized by the facile hydr...An immature pinecone shaped hierarchically structured zirconia (ZrO2-ipch) and a cobblestone-like zirconia nanoparticulate (ZrO2-cs), both with the monoclinic phase (m-phase), were synthesized by the facile hydrothermal method and used as the support for a Ni catalyst for the dry reforming of methane (DRM) with CO2. ZrO2-ipch is a much better support than ZrO2-cs and the traditional ZrO2 irregular particles made by a simple precipitation method (ZrO2-ip). The supported Ni catalyst on ZrO2-ipch (Ni/ZrO2-ipch) exhibited outstanding catalytic activity and coke-resistant stability compared to the ones on ZrO2-cs (Ni/ZrO2-cs) and ZrO2-ip (Ni/ZrO2-ip). Ni/ZrO2-ip exhibited the worst catalytic performance. The origin of the significantly enhanced catalytic performance was revealed by characterization including XRD, N2 adsorption measurement (BET), TEM, H2-TPR, CO chemisorption, CO2-TPD, XPS and TGA. The superior catalytic activity of Ni/ZrO2-ipch to Ni/ZrO2-cs or Ni/ZrO2-ip was ascribed to a higher Ni dispersion, increased reducibility, enhanced oxygen mo- bility, and more basic sites with a higher strength, which were due to the unique hierarchically structural morphology of the ZrO2-ipch support. Ni/ZrO2-ipch exhibited better stability for the DRM reaction than Ni/ZrO2-ip, which was ascribed to its higher resistance to Ni sintering due to a strengthened metal-support interaction and the confinement effect of the mesopores and coke deposition resistance. The higher coking resistance of Ni/ZrO2-ipch for the DRM reaction in comparison with Ni/ZrOz-ip orignated from the coke-removalabitity of the higher amount of lattice oxygen and more basic sites, confirmed by XPS and CO2-TPD analysis, and the stabilized Ni on the Ni/ZrO2-ipch catalyst by the confinement effect of the mesopores of the hierarchical ZrO2-ipch sup- port. The superior catalytic performance and coking resistance of the Ni/ZrO2-ipch catalyst makes it a promising candidate for synthesis gas production from the DRM reaction.展开更多
Overweight or obesity has become a serious public health problem in the world, scientists are concentrating their efforts on exploring novel ways to treat obesity. Nowadays, the availabilities of bariatric surgery and...Overweight or obesity has become a serious public health problem in the world, scientists are concentrating their efforts on exploring novel ways to treat obesity. Nowadays, the availabilities of bariatric surgery and pharmacotherapy have enhanced obesity treatment, but it should has support from diet, physical exercise and lifestyle modification, especially the functional food. Resistant starch, an indigestible starch, has been studied for years for its beneficial effects on regulating blood glucose level and lipid metabolism. The aim of this review is to summarize the effect of resistant starch on weight loss and the possible mechanisms. According to numerous previous studies it could be concluded that resistant starch can reduce fat accumulation, enhance insulin sensitivity, regulate blood glucose level and lipid metabolism. Recent investigations have focused on the possible associations between resistant starch and incretins as well as gut microbiota. Resistant starch seems to be a promising dietary fiber for the prevention or treatment of obesity and its related diseases.展开更多
Cucumber seedlings were sprayed with different concentrations of LaCl_3 for 3 d continuously. After 7 d of this treatment, the plants were treated with 1200 mg·L^(-1) 2,4-dichlorophennoxy(2,4-D) for 24 h. The lea...Cucumber seedlings were sprayed with different concentrations of LaCl_3 for 3 d continuously. After 7 d of this treatment, the plants were treated with 1200 mg·L^(-1) 2,4-dichlorophennoxy(2,4-D) for 24 h. The leaves were harvested and rinsed with 5 mmol·L^(-1) EDTA. The concentrations of photosynthetic pigments, soluble protein and metabolites related to oxidative stress and the activities of antioxidant enzymes in leaves were assayed. The results show that the treatment with appropriate concentration of LaCl_3 has resistant effect on oxidative stress induced by 2, 4-D. Proper concentration of LaCl_3 promotes the activity of antioxidant system in plants and alleviates the damage caused by 2, 4-D.展开更多
Inspired by previous resistance models for porous media, a resistance expression of gas migration within coal seams based on the ideal matchstick geometry, combined with the Darcy equation and the modified Poiseuille ...Inspired by previous resistance models for porous media, a resistance expression of gas migration within coal seams based on the ideal matchstick geometry, combined with the Darcy equation and the modified Poiseuille equation is proposed. The resistance to gas migration is generally dynamic because of the variations in adsorption swelling and matrix shrinkage. Due to the limitations of experimental conditions,only a theoretical expression of resistance to gas migration in coal is deduced, and the impacts of tortuosity, effective stress and pore pressure on the resistance are then considered. To validate the proposed expression, previous data from other researchers are adopted for the history matching exercise, and the agreement between the two is good.展开更多
The dynamic effective shear strength of saturated sand under cyclic loading is discussed in this paper.The discussion includes the transient time depen- dency behaviors based on the analysis of the results obtained in...The dynamic effective shear strength of saturated sand under cyclic loading is discussed in this paper.The discussion includes the transient time depen- dency behaviors based on the analysis of the results obtained in conventional cyclic triaxial tests and cyclic torsional shear triaxial tests.It has been found that the dy- namic effective shear strength is composed of effective frictional resistance and viscous resistance,which are characterized by the strain rate dependent feature of strength magnitude,the coupling of consolidation stress with cyclic stress and the dependency of time needed to make the soil strength sufficiently mobilized,and can also be ex- pressed by the extended Mohr-Coulomb's law.The two strength parameters of the dynamic effective internal frictional angle φd and the dynamic viscosity coefficient η are determined.The former is unvaried for different number of cyclic loading,dy- namic stress form and consolidation stress ratio.And the later is unvaried for the different dynamic shear strain rate γt developed during the sand liquefaction,but increases with the increase of initial density of sand.The generalization of dynamic effective stress strength criterion in the 3-dimensional effective stress space is studied in detail for the purpose of its practical use.展开更多
The effects of three different typical resistivity models(Spitzer, Z&L and M&G) on the performance of pulsed inductive acceleration plasma are studied. Numerical results show that their influences decrease with th...The effects of three different typical resistivity models(Spitzer, Z&L and M&G) on the performance of pulsed inductive acceleration plasma are studied. Numerical results show that their influences decrease with the increase of the plasma temperature. The significant discriminations among them appear at the plasma temperature lower than 2.5 eV, and the maximum gap of the pulsed inductive plasma accelerated efficiency is approximately 2.5%.Moreover, the pulsed inductive plasma accelerated efficiency is absolutely related to the dynamic impedance parameters, such as voltage, inductance, capacitance and flow rate. However, the distribution of the efficiency as a function of plasma temperature with three resistivity models has nothing to do with the dynamic impedance parameter.展开更多
Residual electrical resistivity due to short-range order has been calculated for Cu100-xAlx (x=9.13,13.56, 14.5 and 14.76 in at pct) alloys using pseudopotential approach, and the results have been discussed in the li...Residual electrical resistivity due to short-range order has been calculated for Cu100-xAlx (x=9.13,13.56, 14.5 and 14.76 in at pct) alloys using pseudopotential approach, and the results have been discussed in the light of experimental studies of the local-order structure of these alloys. In case of Cu85.5Al14.5, change in the total residual electrical resistivity due to neutron-irradiation effects has been estimated by including contributions from the short-range order and static atomic displacement correction. Our results show a decrease in the residual resistivity in the irradiated Cu-Al solid solution as compared to the unirradiated sample. This is in accordance with the experimental results展开更多
Reducing the contact resistance without degrading the mobility property is crucial to achieve high-performance graphene field effect transistors. Also, the idea of modifying the graphene surface by etching away the de...Reducing the contact resistance without degrading the mobility property is crucial to achieve high-performance graphene field effect transistors. Also, the idea of modifying the graphene surface by etching away the deposited metal provides a new angle to achieve this goal. We exploit this idea by providing a new process method which reduces the contact resistance from 597Ω ·μm to sub 200 Ω ·μm while no degradation of mobility is observed in the devices. This simple process method avoids the drawbacks of uncontrollability, ineffectiveness, and trade-off with mobility which often exist in the previously proposed methods.展开更多
Nodal-line semimetals have become a research hot-spot due to their novel properties and great potential application in spin electronics. It is more challenging to find 2D nodal-line semimetals that can resist the spin...Nodal-line semimetals have become a research hot-spot due to their novel properties and great potential application in spin electronics. It is more challenging to find 2D nodal-line semimetals that can resist the spin–orbit coupling(SOC)effect. Here, we predict that 2D tetragonal Zn B is a nodal-line semimetal with great transport properties. There are two crossing bands centered on the S point at the Fermi surface without SOC, which are mainly composed of the pxy orbitals of Zn and B atoms and the pz orbitals of the B atom. Therefore, the system presents a nodal line centered on the S point in its Brillouin zone(BZ). And the nodal line is protected by the horizontal mirror symmetry M_(z). We further examine the robustness of a nodal line under biaxial strain by applying up to-4% in-plane compressive strain and 5% tensile strain on the Zn B monolayer, respectively. The transmission along the a direction is significantly stronger than that along the b direction in the conductive channel. The current in the a direction is as high as 26.63 μA at 0.8 V, and that in the b direction reaches 8.68 μA at 0.8 V. It is interesting that the transport characteristics of Zn B show the negative differential resistance(NDR) effect after 0.8 V along the a(b) direction. The results provide an ideal platform for research of fundamental physics of 2D nodal-line fermions and nanoscale spintronics, as well as the design of new quantum devices.展开更多
Antibiotic wastewater contains a variety of pollutant stressors that can induce and promote antibiotic resistance(AR)when released into the environment.Although these substances are mostly in concentrations lower than...Antibiotic wastewater contains a variety of pollutant stressors that can induce and promote antibiotic resistance(AR)when released into the environment.Although these substances are mostly in concentrations lower than those known to induce AR individually,it is possible that antibiotic wastewater discharge might still promote the AR transmission risk via additive or synergistic effects.However,the comprehensive effect of antibiotic wastewater on AR development has rarely been evaluated,and its treatment efficiency remains unknown.Here,samples were collected from different stages of a cephalosporin production wastewater treatment plant,and the potential AR induction effect of their chemical mixtures was explored through the exposure of the antibiotic-sensitive Escherichia coli K12 strain.Incubation with raw cephalosporin production wastewater significantly promoted mutation rates(3.6×10^(3)-9.3×10^(3)-fold)and minimum inhibition concentrations(6.0-6.7-fold)of E.coli against ampicillin and chloramphenicol.This may be attributed to the inhibition effect and oxidative stress of cephalosporin wastewater on E.coli.The AR induction effect of cephalosporin wastewater decreased after the coagulation sedimentation treatment and was completely removed after the full treatment process.A Pearson correlation analysis revealed that the reduction in the AR induction effect had a strong positive correlation with the removal of organics and biological toxicity.This indicates that the antibiotic wastewater treatment had a collaborative processing effect of conventional pollutants,toxicity,and the AR induction effect.This study illustrates the potential AR transmission risk of antibiotic wastewater and highlights the need for its adequate treatment.展开更多
基金supported by the Postgraduate Inovation Programme of Changchun Wormal University(YJSCX202424)the Science and Technology Project of Jilin Provincial Education Department(JJKH20220828KJ)the Natural Science Foundation of Changchun Normal University(2020-005).
文摘The electronic and transport characteristics of protonated derivatives of naphthalocyanine(Nc)were investigated using density functional theory and non-equilibrium Green's functions.The results indicate that the protonation of external meso-N atoms of Nc preserves its planar structure and is energetically more favorable than the protonation of internal isoindole-N atoms.The protonation shifts the energy levels of system's frontier molecular orbitals closer to the Fermi level,thus creating channels for electron transport.In contrast with the semiconductor transport properties of H2Nc,its protonation products respond more sensitively to bias and exhibit negative differential resistance phenomena at specific bias.
文摘We obtained the output characteristics in wurtzite Al0.15Ga0.85N/GaN MODFETs with the full band Monte Carlo method. The gate length Lg and the channel length Los in the device are 0.2 μm and 0.4 urn, respectively. In the output characteristics we found a differential negative resistance effect. That is, as VDS is a constant, initially, VDS increases with increasing VDS. When VDS exceeds a certain critical value, IDS decreases with increasing VDS. The analysis for velocity-field characteristics in wurtzite CaN, the distributions of the electric field and the electron velocity in the two dimensional electron gas channel indicates that the differential negative resistance effect of the electron average velocity results in the differential negative resistance effect of the output characteristics. The transient transport also is related to the differential negative resistance effect of the output characteristics. This effect only can be observed in the devices with very short channel.
基金Project supported by the National High Technology Research and Development Program(863 Program)of China(No.SS2015AA010601)the National Natural Science Foundation of China(Nos.61176091+1 种基金61306129)the Opening Project of the Key Laboratory of Microelectronics Devices&Integrated Technology,Institute of Microelectronics,Chinese Academy of Sciences
文摘The time zero dielectric breakdown characteristics of MOSCAP with ultra-thin EOT high-k metal gate stacks are studied. The TZDB results show an abnormal area dependence due to the series resistance effect. The series resistance components extracted from the Fowler-Nordheim tunneling relation are attributed to the spreading resistance due to the asymmetry electrodes. Based on a series model to eliminate the series resistance effect, an area acceleration dependence is obtained by correcting the TZDB results. The area dependence follows Poisson area scaling rules, which indicates that the mechanism of TZDB is the same as TDDB and could be considered as a trap generation process.
基金This work is supported by Scientific Research Foundation for Returned 0verseas Chinese Scholarsthe National Natural Science Foundation of China(50476049).
文摘A three-dimensional direct simulation of an immersed solid particle approaching another particle, or a flat wall, is conducted to investigate the mechanics of hydrodynamic impact of immersed particles. The simulation method is based on a modified immersed boundary method using a fixed grid system. When the particle separation distance becomes smaller than grid spacing, to account for the hydrodynamic resistance effect of liquid layer between particles near contact, a microlayer model is developed to allow determination of the pressure profile within the micro-layer without neglecting the inertial force of the layer flow. The pressure force is then taken into account in equation of particle motion. Comparisons of the simulation results with the experimental results reported in the literature are shown to substantiate the model presented in this study. The simulations reveal the complex three-dimensional flow field of the liquid and the motion of the approaching particle. The fluid pressure in the gap caused by the unsteady motion of the particle is significantly increased when the separation distance of particles is less than about one-tenth diameters of particle. Therefore the velocity of approaching particle starts to decrease due to the hydrodynamic resistance force at this position.
文摘Nitriding is employed for the hard Fe electrodeposition to produce a hard-facing and antiwear coating. It only takes 1 h for the hard Fe coating, which is much shorter than nitriding the Fe and steel. The results showed that the nitriding can increase the microhardness, wear resistance of the coating, as well as the bonding strength of the coating with the substrate. Additionally it can eliminate the brittleness, turn the internal stress of the coating from tension to compression. The wear resistance of the nitrided Fe coating is 4.6 times as high as that of Cr coating. It is simple and economic to combine hard Fe electroplating and nitriding, which is a good technology of the tribological surface modification.
文摘According to the analysis of 654 soil samples collected from 45 counties in Zhejiang Provence, 73.7% of paddy field showed Si deficient. During 1991 and 1993, in Lishi, Longquang, Qingtian and Tonglu Counties, field experiments were conducted to test the effects of basal or additional Si-fertilizer on rice. Si-fertilizer was produced by Nanjing Inorganic Chemical Manufacture, containing 50% water solu
文摘We analyzed the resistant inheritance of ajaponica variety,Jia23,to two bacterial blightpathogen strains,KS-6-6 and Zhe 173,rep-resenting respectively the two predominantpathogenic types(Ⅱ and Ⅳ)in the rice crop-ping area along the Yangtze River Valley.Jia23 was crossed with susceptible vari-eties,Ewan8 and 7416.Fplants were back-
文摘Salicylic acid(SA)is an endogenous regulatorymolecule for plant flowering and thermogene-sis,and has been reported as a signal moleculeof plant disease resistance in the plant-pathogen interaction.Exogenous SA is capableof inducing disease resistance in a wide range ofplants.This study was to evaluate the poten-tial for SA to induce resistance of rice seedlings
基金The National Science Foundation of China under contract No.40572142the Doctoral Foundation of the Ministry of Education of China under contract No.20040423016.
文摘The diffusive boundary layer (DBL) is the zone for matter exchange between surface water and aquatic sediments. To elucidate the influence of DBL on salt release from saline sediments to freshwater, two experiments with or without wind blowing were conducted. According to the experiments, a 3.5 cm DBL is formed above the smoothed sediments at a steady wind field and this thickness is greater than other studies. The observed flux of salt through the DBL is 6% larger than the calculated value from Fick' s first law. The results indicate that molecular diffusion is the dominant mechanism for salt transport through the DBL. The presence of DBL suppresses the hydrodynamic enhancement for matter exchange between sediments and overlying water. Therefore, salts in the sediments of a polder reservoir may influence the water quality chronically.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11604019,61574020,and 61376018)the Ministry of Science and Technology of China(Grant No.2016YFA0301300)+1 种基金the Fund of State Key Laboratory of Information Photonics and Optical Communications(Beijing University of Posts and Telecommunications),Chinathe Fundamental Research Funds for the Central Universities,China(Grant No.2016RCGD22)
文摘Tunneling field effect transistors(TFETs) based on two-dimensional materials are promising contenders to the traditional metal oxide semiconductor field effect transistor, mainly due to potential applications in low power devices. Here,we investigate the TFETs based on two different integration types: in-plane and vertical heterostructures composed of two kinds of layered phosphorous(β-P and δ-P) by ab initio quantum transport simulations. NDR effects have been observed in both in-plane and vertical heterostructures, and the effects become significant with the highest peak-to-valley ratio(PVR)when the intrinsic region length is near zero. Compared with the in-plane TFET based on β-P and δ-P, better performance with a higher on/off current ratio of - 10-6 and a steeper subthreshold swing(SS) of - 23 mV/dec is achieved in the vertical TFET. Such differences in the NDR effects, on/off current ratio and SS are attributed to the distinct interaction nature of theβ-P and δ-P layers in the in-plane and vertical heterostructures.
基金financially supported by the Joint Fund of Coal, set up by National Natural Science Foundation of China and Shenhua Co., Ltd.(U1261104)the National Natural Science Foundation of China (21276041)+3 种基金the Program for New Century Excellent Talents in University (NCET-12-0079)the Natural Science Foundation of Liaoning Province (2015020200)the Fundamental Research Funds for the Central Universities (DUT15LK41)the Science and Technology Development Program of Hangzhou (20130533B14)~~
文摘An immature pinecone shaped hierarchically structured zirconia (ZrO2-ipch) and a cobblestone-like zirconia nanoparticulate (ZrO2-cs), both with the monoclinic phase (m-phase), were synthesized by the facile hydrothermal method and used as the support for a Ni catalyst for the dry reforming of methane (DRM) with CO2. ZrO2-ipch is a much better support than ZrO2-cs and the traditional ZrO2 irregular particles made by a simple precipitation method (ZrO2-ip). The supported Ni catalyst on ZrO2-ipch (Ni/ZrO2-ipch) exhibited outstanding catalytic activity and coke-resistant stability compared to the ones on ZrO2-cs (Ni/ZrO2-cs) and ZrO2-ip (Ni/ZrO2-ip). Ni/ZrO2-ip exhibited the worst catalytic performance. The origin of the significantly enhanced catalytic performance was revealed by characterization including XRD, N2 adsorption measurement (BET), TEM, H2-TPR, CO chemisorption, CO2-TPD, XPS and TGA. The superior catalytic activity of Ni/ZrO2-ipch to Ni/ZrO2-cs or Ni/ZrO2-ip was ascribed to a higher Ni dispersion, increased reducibility, enhanced oxygen mo- bility, and more basic sites with a higher strength, which were due to the unique hierarchically structural morphology of the ZrO2-ipch support. Ni/ZrO2-ipch exhibited better stability for the DRM reaction than Ni/ZrO2-ip, which was ascribed to its higher resistance to Ni sintering due to a strengthened metal-support interaction and the confinement effect of the mesopores and coke deposition resistance. The higher coking resistance of Ni/ZrO2-ipch for the DRM reaction in comparison with Ni/ZrOz-ip orignated from the coke-removalabitity of the higher amount of lattice oxygen and more basic sites, confirmed by XPS and CO2-TPD analysis, and the stabilized Ni on the Ni/ZrO2-ipch catalyst by the confinement effect of the mesopores of the hierarchical ZrO2-ipch sup- port. The superior catalytic performance and coking resistance of the Ni/ZrO2-ipch catalyst makes it a promising candidate for synthesis gas production from the DRM reaction.
基金supported by the National Natural Science Foundation major international(regional)joint research project(81220108006)to WJYoung Scientists Fund of National Natural Science Foundation(81200292),Young Scientists Fund of National Natural Science Foundation(81200655)to LSShanghai Rising-Star Program(13QA1402900)and Hong Kong Scholars Program(XJ2013035)to HL
文摘Overweight or obesity has become a serious public health problem in the world, scientists are concentrating their efforts on exploring novel ways to treat obesity. Nowadays, the availabilities of bariatric surgery and pharmacotherapy have enhanced obesity treatment, but it should has support from diet, physical exercise and lifestyle modification, especially the functional food. Resistant starch, an indigestible starch, has been studied for years for its beneficial effects on regulating blood glucose level and lipid metabolism. The aim of this review is to summarize the effect of resistant starch on weight loss and the possible mechanisms. According to numerous previous studies it could be concluded that resistant starch can reduce fat accumulation, enhance insulin sensitivity, regulate blood glucose level and lipid metabolism. Recent investigations have focused on the possible associations between resistant starch and incretins as well as gut microbiota. Resistant starch seems to be a promising dietary fiber for the prevention or treatment of obesity and its related diseases.
文摘Cucumber seedlings were sprayed with different concentrations of LaCl_3 for 3 d continuously. After 7 d of this treatment, the plants were treated with 1200 mg·L^(-1) 2,4-dichlorophennoxy(2,4-D) for 24 h. The leaves were harvested and rinsed with 5 mmol·L^(-1) EDTA. The concentrations of photosynthetic pigments, soluble protein and metabolites related to oxidative stress and the activities of antioxidant enzymes in leaves were assayed. The results show that the treatment with appropriate concentration of LaCl_3 has resistant effect on oxidative stress induced by 2, 4-D. Proper concentration of LaCl_3 promotes the activity of antioxidant system in plants and alleviates the damage caused by 2, 4-D.
基金supported by the State Key Research Development Program of China (Nos. 2016YFC0801402 and 2016YFC0600708)the National Natural Science Foundation of China (No. 51474219)
文摘Inspired by previous resistance models for porous media, a resistance expression of gas migration within coal seams based on the ideal matchstick geometry, combined with the Darcy equation and the modified Poiseuille equation is proposed. The resistance to gas migration is generally dynamic because of the variations in adsorption swelling and matrix shrinkage. Due to the limitations of experimental conditions,only a theoretical expression of resistance to gas migration in coal is deduced, and the impacts of tortuosity, effective stress and pore pressure on the resistance are then considered. To validate the proposed expression, previous data from other researchers are adopted for the history matching exercise, and the agreement between the two is good.
基金The project supported by the National Natural Science Foundation of China (10172070)
文摘The dynamic effective shear strength of saturated sand under cyclic loading is discussed in this paper.The discussion includes the transient time depen- dency behaviors based on the analysis of the results obtained in conventional cyclic triaxial tests and cyclic torsional shear triaxial tests.It has been found that the dy- namic effective shear strength is composed of effective frictional resistance and viscous resistance,which are characterized by the strain rate dependent feature of strength magnitude,the coupling of consolidation stress with cyclic stress and the dependency of time needed to make the soil strength sufficiently mobilized,and can also be ex- pressed by the extended Mohr-Coulomb's law.The two strength parameters of the dynamic effective internal frictional angle φd and the dynamic viscosity coefficient η are determined.The former is unvaried for different number of cyclic loading,dy- namic stress form and consolidation stress ratio.And the later is unvaried for the different dynamic shear strain rate γt developed during the sand liquefaction,but increases with the increase of initial density of sand.The generalization of dynamic effective stress strength criterion in the 3-dimensional effective stress space is studied in detail for the purpose of its practical use.
基金Supported by the Fund of Science and Technology on Vacuum Technology and Physics Laboratory of Lanzhou Institute of Physics under Grant No YSC0715the National Natural Science Foundation of China under Grant No 62601210the Civil Aerospace Technology Research Project under Grant No D010509
文摘The effects of three different typical resistivity models(Spitzer, Z&L and M&G) on the performance of pulsed inductive acceleration plasma are studied. Numerical results show that their influences decrease with the increase of the plasma temperature. The significant discriminations among them appear at the plasma temperature lower than 2.5 eV, and the maximum gap of the pulsed inductive plasma accelerated efficiency is approximately 2.5%.Moreover, the pulsed inductive plasma accelerated efficiency is absolutely related to the dynamic impedance parameters, such as voltage, inductance, capacitance and flow rate. However, the distribution of the efficiency as a function of plasma temperature with three resistivity models has nothing to do with the dynamic impedance parameter.
文摘Residual electrical resistivity due to short-range order has been calculated for Cu100-xAlx (x=9.13,13.56, 14.5 and 14.76 in at pct) alloys using pseudopotential approach, and the results have been discussed in the light of experimental studies of the local-order structure of these alloys. In case of Cu85.5Al14.5, change in the total residual electrical resistivity due to neutron-irradiation effects has been estimated by including contributions from the short-range order and static atomic displacement correction. Our results show a decrease in the residual resistivity in the irradiated Cu-Al solid solution as compared to the unirradiated sample. This is in accordance with the experimental results
基金Project by the National Science and Technology Major Project,China(Grant No.2011ZX02707.3)the National Natural Science Foundation of China(Grant No.61136005)+1 种基金the Chinese Academy of Sciences(Grant No.KGZD-EW-303)the Project of Beijing Municipal Science and Technology Commission,China(Grant No.Z151100003515003)
文摘Reducing the contact resistance without degrading the mobility property is crucial to achieve high-performance graphene field effect transistors. Also, the idea of modifying the graphene surface by etching away the deposited metal provides a new angle to achieve this goal. We exploit this idea by providing a new process method which reduces the contact resistance from 597Ω ·μm to sub 200 Ω ·μm while no degradation of mobility is observed in the devices. This simple process method avoids the drawbacks of uncontrollability, ineffectiveness, and trade-off with mobility which often exist in the previously proposed methods.
基金Project supported by the Natural Science Foundation of Shandong Province, China (Grant No. ZR2019MA041)Taishan Scholar Project of Shandong Province, China (Grant No. ts20190939)the National Natural Science Foundation of China (Grant No. 62071200)。
文摘Nodal-line semimetals have become a research hot-spot due to their novel properties and great potential application in spin electronics. It is more challenging to find 2D nodal-line semimetals that can resist the spin–orbit coupling(SOC)effect. Here, we predict that 2D tetragonal Zn B is a nodal-line semimetal with great transport properties. There are two crossing bands centered on the S point at the Fermi surface without SOC, which are mainly composed of the pxy orbitals of Zn and B atoms and the pz orbitals of the B atom. Therefore, the system presents a nodal line centered on the S point in its Brillouin zone(BZ). And the nodal line is protected by the horizontal mirror symmetry M_(z). We further examine the robustness of a nodal line under biaxial strain by applying up to-4% in-plane compressive strain and 5% tensile strain on the Zn B monolayer, respectively. The transmission along the a direction is significantly stronger than that along the b direction in the conductive channel. The current in the a direction is as high as 26.63 μA at 0.8 V, and that in the b direction reaches 8.68 μA at 0.8 V. It is interesting that the transport characteristics of Zn B show the negative differential resistance(NDR) effect after 0.8 V along the a(b) direction. The results provide an ideal platform for research of fundamental physics of 2D nodal-line fermions and nanoscale spintronics, as well as the design of new quantum devices.
基金supported by the National Key Research and Development Program of China(No.2017ZX07103-007)。
文摘Antibiotic wastewater contains a variety of pollutant stressors that can induce and promote antibiotic resistance(AR)when released into the environment.Although these substances are mostly in concentrations lower than those known to induce AR individually,it is possible that antibiotic wastewater discharge might still promote the AR transmission risk via additive or synergistic effects.However,the comprehensive effect of antibiotic wastewater on AR development has rarely been evaluated,and its treatment efficiency remains unknown.Here,samples were collected from different stages of a cephalosporin production wastewater treatment plant,and the potential AR induction effect of their chemical mixtures was explored through the exposure of the antibiotic-sensitive Escherichia coli K12 strain.Incubation with raw cephalosporin production wastewater significantly promoted mutation rates(3.6×10^(3)-9.3×10^(3)-fold)and minimum inhibition concentrations(6.0-6.7-fold)of E.coli against ampicillin and chloramphenicol.This may be attributed to the inhibition effect and oxidative stress of cephalosporin wastewater on E.coli.The AR induction effect of cephalosporin wastewater decreased after the coagulation sedimentation treatment and was completely removed after the full treatment process.A Pearson correlation analysis revealed that the reduction in the AR induction effect had a strong positive correlation with the removal of organics and biological toxicity.This indicates that the antibiotic wastewater treatment had a collaborative processing effect of conventional pollutants,toxicity,and the AR induction effect.This study illustrates the potential AR transmission risk of antibiotic wastewater and highlights the need for its adequate treatment.