期刊文献+
共找到316篇文章
< 1 2 16 >
每页显示 20 50 100
基于ResNet的害虫图像质量评估方法
1
作者 王红梅 朱莉 《长春工业大学学报》 CAS 2024年第1期52-58,共7页
提出一种基于ResNet的害虫图像质量评估方法,从而对林业害虫图像进行预评估。该方法首先提取害虫图像特征,并通过Wasserstein距离计算不同图像特征间的相似分布距离作为质量伪标签进行训练。通过预评估区分出不同质量的林业害虫图像,对... 提出一种基于ResNet的害虫图像质量评估方法,从而对林业害虫图像进行预评估。该方法首先提取害虫图像特征,并通过Wasserstein距离计算不同图像特征间的相似分布距离作为质量伪标签进行训练。通过预评估区分出不同质量的林业害虫图像,对其进行筛选、识别、分类,从而达到提高识别准确率的效果。实验结果表明,经过该方法筛选后的林业害虫数据集在ResNet18和ResNet50网络上识别准确率分别提升2.97%,2.57%。 展开更多
关键词 resnet 卷积神经网络 林业害虫 质量评估
下载PDF
ResNet-UAN-AUD:基于深度学习的水声上行非正交多址通信系统活动用户检测方法
2
作者 王建平 陈光岚 +1 位作者 冯启高 马建伟 《传感技术学报》 CAS CSCD 北大核心 2024年第6期985-996,共12页
水下声学网络(Underwater Acoustic Networks,UAN)是探测未知水域的重要技术手段。非正交多址(Non-Orthogonal Multiple Access,NOMA)是一种新颖的移动通信技术,支持时域、频域、空域/编域的非正交分配,可有效地提高网络容量和用户接入... 水下声学网络(Underwater Acoustic Networks,UAN)是探测未知水域的重要技术手段。非正交多址(Non-Orthogonal Multiple Access,NOMA)是一种新颖的移动通信技术,支持时域、频域、空域/编域的非正交分配,可有效地提高网络容量和用户接入数,为性能和电量受限的UAN提供创新解决方案。活动用户检测(Active User Detection,AUD)是NOMA通信系统的基础支撑,对于NOMA系统消除信号干扰和提高接收性能至关重要。ResNet是基于残差模块跳跃连接的神经网络,解决了深度学习的梯度消失和网络退化问题。提出了一种基于深度学习的水声上行NOMA通信系统AUD检测方案。首先,构建水声上行NOMA通信系统基本模型;其次,实施NOMA活动用户检测问题的数学表征;接着,开发基于ResNet网络的水声NOMA系统活动节点检测方法(ResNet-UAN-AUD);最后,执行仿真实验。结果表明,ResNet-UAN-AUD的检测性能接近基于长短期记忆网络的活动用户检测(LSTM-UAN-AUD)方案,而复杂度略高于基于卷积神经网络的活动用户检测(CNN-UAN-AUD)技术,实现了次优目标,适合水声上行NOMA系统使用。 展开更多
关键词 水声网络 深度学习 残差神经网络(resnet) 活动用户检测 上行NOMA通信系统
下载PDF
多导联心电图识别的稳定步长ResNet深度网络
3
作者 曹玉怡 覃华 卢才德 《广西大学学报(自然科学版)》 CAS 北大核心 2024年第2期374-385,共12页
针对经典的ResNet深度神经网络对一维多导联心电图图像进行识别、分类时,因原始图像的维度较高导致提取到的深度特征维度高,造成全连接层训练出现收敛速度慢和过拟合的问题,在ResNet的全连接层提出一种稳定步长动量训练算法,通过引入近... 针对经典的ResNet深度神经网络对一维多导联心电图图像进行识别、分类时,因原始图像的维度较高导致提取到的深度特征维度高,造成全连接层训练出现收敛速度慢和过拟合的问题,在ResNet的全连接层提出一种稳定步长动量训练算法,通过引入近似二阶梯度信息增强动量法的寻优能力和加速收敛速度;利用连续2次迭代的参数变化量和梯度信息自适应调整步长,构造边界函数对步长的大小进行限制,以防止步长过大或过小而影响收敛稳定性,使用动量项对参数的更新方向进行修正。在CPSC2018心电图数据集上的实验结果表明:所提算法训练的ResNet取得的F 1分数、准确率、精确度分别达到0.859、97.4%、87.9%,收敛速度和整体分类指标值优于其他相比较的方法。 展开更多
关键词 多导联心电图 resnet深度网络 动量优化算法 稳定步长 二阶梯度信息
下载PDF
基于注意力机制的ResNet-LSTM煤矿瓦斯浓度预测模型
4
作者 张玲 杨超宇 《煤炭技术》 CAS 2024年第8期208-213,共6页
对煤矿井下瓦斯浓度的预测一直以来是矿井安全进行早期预警和管理的关键问题。为了进一步提高煤矿瓦斯浓度预测的准确度,提出了一种基于深度学习的方法,称为AR-LSTM,它包括残差神经网络(ResNet)、长短时记忆(LSTM)网络和基于注意力的网... 对煤矿井下瓦斯浓度的预测一直以来是矿井安全进行早期预警和管理的关键问题。为了进一步提高煤矿瓦斯浓度预测的准确度,提出了一种基于深度学习的方法,称为AR-LSTM,它包括残差神经网络(ResNet)、长短时记忆(LSTM)网络和基于注意力的网络,用于煤矿井下瓦斯浓度的预测。AR-LSTM不仅使用瓦斯浓度这一变量,同时将采集的温度、风速和一氧化碳浓度作为输入。因此,在AR-LSTM模型中,ResNet-LSTM网络学习多变量时间序列数据的时序相关性和相互依赖性,注意力机制用于捕捉过去不同时间步的特征状态对未来瓦斯浓度的重要性程度。基于注意力的层可以自动加权过去的特征状态以提高预测准确性,使用煤矿地区的瓦斯浓度数据进行预测,并将其与3种基准方法进行比较。为了比较每种方法的整体性能,实验中使用了均方根误差E_(RMS)、平均绝对误差E_(MA)和决定系数R^(2)。实验结果表明,AR-LSTM模型能够以最高性能处理煤矿瓦斯浓度的预测问题,并且可以实现1步或多步提前预测。 展开更多
关键词 瓦斯浓度预测 resnet网络 LSTM网络 注意力机制
下载PDF
基于改进ResNet网络和迁移学习的服装图像风格识别研究
5
作者 夏明桂 田入君 +1 位作者 姜会钰 董敏 《纺织工程学报》 2024年第1期12-20,共9页
传统的服装图像风格识别方法主要依赖于成功提取有效特征,这些方法在处理图像时不仅会消耗大量的时间和精力,识别精度也较低。为了提高服装图像风格识别的性能,提出了一种基于改进的ResNet152网络和迁移学习的服装图像风格识别方法。首... 传统的服装图像风格识别方法主要依赖于成功提取有效特征,这些方法在处理图像时不仅会消耗大量的时间和精力,识别精度也较低。为了提高服装图像风格识别的性能,提出了一种基于改进的ResNet152网络和迁移学习的服装图像风格识别方法。首先将ResNet152网络首层结构中的7×7卷积核替换成3个3×3卷积核组合层,其次把原始残差单元中的“卷积层(Conv)+批归一化层(BN)+非线性激活函数层(Relu)”的组合方式换成“批归一化层(BN)+非线性激活函数层(Relu)+卷积层(Conv)”的组合方式。这两个改进方法有效地提升了网络性能,使其能够更好地捕捉不同尺度的服装风格特征。然后把在ImageNet数据集上训练好的ResNet152网络模型参数迁移到改进的网络中,在此基础上,将女童服装数据集输入到网络中进行训练验证以及微调网络参数。结果表明,所提出的方法风格识别准确率达到了94.2%,训练效果好,识别精度、收敛速度等均优于其他风格识别网络,可以更好的完成女童服装风格识别任务。 展开更多
关键词 resnet网络 迁移学习 服装图像 服装风格识别 识别准确率
下载PDF
基于ResNet与分离注意力机制的肺部超声图像分类系统设计
6
作者 杨倩茹 郭峻氚 《中国医疗设备》 2024年第10期52-57,共6页
目的为解决传统的深度学习模型在处理具有多样性图像质量和微妙病变区域差异的肺部超声图像方面性能不佳的问题,设计一种基于残差网络(Residual Network,ResNet)与分离注意力机制的肺部超声图像分类系统。方法采用ResNet152作为基础模型... 目的为解决传统的深度学习模型在处理具有多样性图像质量和微妙病变区域差异的肺部超声图像方面性能不佳的问题,设计一种基于残差网络(Residual Network,ResNet)与分离注意力机制的肺部超声图像分类系统。方法采用ResNet152作为基础模型,结合分离注意力机制,通过对肺部超声图像进行预处理、数据增强和标准化处理,以提高模型的特征提取和分类能力。模型首先通过ResNet152进行深度特征提取,随后在各层引入分离注意力机制,增强模型对重要图像特征的关注,从而提高分类性能。结果实验结果表明,优化后模型与原始模型相比,分类准确度在A线、B线、胸腔积液和肺实变上分别提升了0.51%、0.95%、14.17%和6.29%。通过消融实验,当同时使用Mish函数和分离注意力机制时,混合模型达到了97.92%的准确度。结论本文提出的融合ResNet与分离注意力机制的肺部超声图像分类系统模型可为临床超声诊断提供较高的参考价值。 展开更多
关键词 残差网络 分离注意力机制 Mish函数 resnet152 肺部超声图像 深度特征提取 图像分类 超声诊断
下载PDF
基于改进ResNet模型的交通标志识别算法
7
作者 傅融 彭淼 逯洋 《智能计算机与应用》 2024年第5期221-226,共6页
本文提出了一种基于改进残差网络ResNet50模型的图像识别方法。通过引入圆形LBP算法,提取图像内部的纹理信息构成纹理图谱;同时在网络中加入通道注意力机制(Efficient Channel Attention,ECA)提高模型性能,使得改进后的算法更适合识别... 本文提出了一种基于改进残差网络ResNet50模型的图像识别方法。通过引入圆形LBP算法,提取图像内部的纹理信息构成纹理图谱;同时在网络中加入通道注意力机制(Efficient Channel Attention,ECA)提高模型性能,使得改进后的算法更适合识别交通标志。该方法在GTSRB和BelgiumTS交通标志数据集上的准确率分别达到99.7%和98.3%,有效提高了智能系统识别交通标志的准确率和驾驶的安全性。 展开更多
关键词 交通标志识别 通道注意力机制 resnet残差网络 纹理识别
下载PDF
基于ResNet的睡姿识别分析
8
作者 周逸鹏 刘谱辉 +1 位作者 骆洁幸 周国平 《集成电路应用》 2024年第6期236-237,共2页
阐述为使智能床垫具有高准确率的睡姿识别功能,设计一种气压传感器结合空气弹簧床垫的睡姿检测系统。使用空气弹簧气压相对变化率作为用户睡姿数据集,提出一种ResNet18睡姿识别模型。
关键词 智能技术应用 resnet 深度残差网络 睡姿识别
下载PDF
基于ResNet和ViT双流网络的小麦病虫害识别
9
作者 王汉生 姚建斌 《农业技术与装备》 2024年第2期18-21,共4页
针对小麦病虫害识别过程中,传统深度学习模型表现不稳定、识别精度低、泛化能力有限的现状,提出了新的双流网络模型,即结合ResNet和ViT以提高识别准确性。该方法融合了卷积神经网络处理图像局部结构,同时利用Transformer捕捉长距离依赖... 针对小麦病虫害识别过程中,传统深度学习模型表现不稳定、识别精度低、泛化能力有限的现状,提出了新的双流网络模型,即结合ResNet和ViT以提高识别准确性。该方法融合了卷积神经网络处理图像局部结构,同时利用Transformer捕捉长距离依赖关系,改进了识别性能。通过2070张小麦病虫害图片数据集训练验证,调整ResNet50和ViT预训练模型参数,结果显示,双流模型在训练集上达96.5%准确率,在验证集获0.94的F_(1)分数,明显优于其他主流单一模型。结果证实,新模型在小麦病虫害识别卓越性能,为其在智能农业系统中广泛应用提供潜力。 展开更多
关键词 小麦病虫害识别 resnet VIT 双流网络 深度学习
下载PDF
基于ResNet18和随机森林的遥感图像复杂场景分类方法
10
作者 彭程 王莉 +3 位作者 王安邦 齐涛 王慧 王靖伟 《山东农业大学学报(自然科学版)》 北大核心 2024年第3期376-384,共9页
复杂场景分类是遥感图像解译的一项重要内容。本文通过优化ResNet18深度残差网络和随机森林,实现了遥感图像复杂场景的高精度分类。首先通过数据扩充将数据库扩充以缓解因训练样本少带来的过拟合问题,然后采用ResNet18深度残差网络自动... 复杂场景分类是遥感图像解译的一项重要内容。本文通过优化ResNet18深度残差网络和随机森林,实现了遥感图像复杂场景的高精度分类。首先通过数据扩充将数据库扩充以缓解因训练样本少带来的过拟合问题,然后采用ResNet18深度残差网络自动提取遥感图像场景特征,最后使用随机森林分类器实现复杂场景分类任务并分别在NWPU-RESISC45和UC Merced Land Use数据库上进行了实验。结果表明,本文模型场景分类准确率分别为98.86%和99.17%,与单独使用ResNet18深度残差网络相比,本文模型分类准确率分别提高3.36%和1.71%,相比于其他场景分类方法,本文模型分类准确率分别提高5.23%和1.55%。 展开更多
关键词 数据扩充 深度残差网络 随机森林 遥感图像 场景分类
下载PDF
基于双分辨率S变换和改进的多尺度ResNet模型的电能质量扰动检测方法
11
作者 覃日升 徐志 +3 位作者 况华 姜訸 奚鑫泽 任敏 《广东电力》 北大核心 2024年第7期68-77,共10页
准确的电能质量扰动检测对改善智能电网中电能质量问题、保证电网安全可靠运行具有重要意义。对此,提出一种基于双分辨率S变换和改进的多尺度ResNet模型的电能质量扰动信号的检测方法。首先,利用双分辨率S变换准确提取电能质量扰动信号... 准确的电能质量扰动检测对改善智能电网中电能质量问题、保证电网安全可靠运行具有重要意义。对此,提出一种基于双分辨率S变换和改进的多尺度ResNet模型的电能质量扰动信号的检测方法。首先,利用双分辨率S变换准确提取电能质量扰动信号的时频特征向量;其次,提出利用Mish函数代替传统ReLU激活函数来改进ResNet,再利用不同卷积核大小的改进ResNet模型对复杂电能质量扰动信号进行特征学习与扰动分类;然后,在不增加网络参数的情况下,提出利用轻量级通道注意力(efficient channel attention,ECA)对电能质量扰动检测分类结果影响较大的重要特征分配更大的权重值,提升模型的分类性能。最后,实验结果表明,与其他电能质量扰动检测方法相比,所提方法具有更高的准确率和抗噪性。 展开更多
关键词 双分辨率S变换 电能质量扰动 残差网络 注意力机制 激活函数
下载PDF
基于联邦学习与改进CBAM-ResNet18的脑肿瘤分类
12
作者 吴波 史东辉 +1 位作者 吕东来 胡涛 《计算机系统应用》 2024年第4期39-49,共11页
针对联邦学习框架下,基于卷积注意力模块的多客户端脑肿瘤分类方法对于MRI图像中肿瘤区域细节提取能力不足、通道注意力与空间注意力相互干扰的问题,以及针对多点医疗肿瘤数据分类准确性低的问题,提出了一种融合联邦学习框架和改进的CBA... 针对联邦学习框架下,基于卷积注意力模块的多客户端脑肿瘤分类方法对于MRI图像中肿瘤区域细节提取能力不足、通道注意力与空间注意力相互干扰的问题,以及针对多点医疗肿瘤数据分类准确性低的问题,提出了一种融合联邦学习框架和改进的CBAM-ResNet18网络的脑肿瘤分类方法.利用联邦学习特性联合多点脑肿瘤数据,采用Leaky ReLU激活函数代替ReLU激活函数以减轻神经元死亡,将卷积注意力模块中的通道注意力模块由先降维再升维改成先升维再降维,充分提高网络对图像细节的提取能力,将卷积注意力模块中的通道注意力模块与空间注意力模块由级联结构改为并联结构,使得网络的特征提取能力不会受到二者先后顺序的影响.通过在Kaggle公开的脑肿瘤MRI数据集上的进行实验,该方法的准确率、精准度、召回率与F1值分别为97.78%、97.68%、97.61%与97.63%,比基准模型分别高6.54%、4.78%、6.80%、7.00%.实验结果证明,该方法不仅能够打破数据孤岛,实现多点数据融合,而且比多数现有主流模型的性能更好. 展开更多
关键词 脑肿瘤分类 联邦学习 卷积注意力模块 残差网络 数据孤岛
下载PDF
基于改进ResNet残差网络的新冠肺炎胸片模型设计
13
作者 许文燕 陈李盛 《智能计算机与应用》 2024年第9期136-139,共4页
新冠肺炎疫情的暴发给全球带来了巨大的挑战,胸片是诊断新冠肺炎的重要影像学手段之一,本文在ResNet残差网络基础上,针对新冠肺炎胸片提出一种新的检测模型。通过对ResNet残差网络模型进行改进,并利用迁移学习对模型进行训练,能够更准... 新冠肺炎疫情的暴发给全球带来了巨大的挑战,胸片是诊断新冠肺炎的重要影像学手段之一,本文在ResNet残差网络基础上,针对新冠肺炎胸片提出一种新的检测模型。通过对ResNet残差网络模型进行改进,并利用迁移学习对模型进行训练,能够更准确地识别和定位肺部病变,从而提高新冠肺炎的诊断效率和准确性。实验结果表明,本文提出的模型在新冠肺炎胸片数据集上检测准确率达95%、召回率达92%、F1值达0.93,能够为新冠肺炎的早期诊断和治疗提供有力的支持。 展开更多
关键词 新冠肺炎 诊断 resnet残差网络 迁移学习
下载PDF
Transfer Learning Approach to Classify the X-Ray Image that Corresponds to Corona Disease Using ResNet50 Pre-Trained by ChexNet
14
作者 Mahyar Bolhassani 《Journal of Intelligent Learning Systems and Applications》 2024年第2期80-90,共11页
The COVID-19 pandemic has had a widespread negative impact globally. It shares symptoms with other respiratory illnesses such as pneumonia and influenza, making rapid and accurate diagnosis essential to treat individu... The COVID-19 pandemic has had a widespread negative impact globally. It shares symptoms with other respiratory illnesses such as pneumonia and influenza, making rapid and accurate diagnosis essential to treat individuals and halt further transmission. X-ray imaging of the lungs is one of the most reliable diagnostic tools. Utilizing deep learning, we can train models to recognize the signs of infection, thus aiding in the identification of COVID-19 cases. For our project, we developed a deep learning model utilizing the ResNet50 architecture, pre-trained with ImageNet and CheXNet datasets. We tackled the challenge of an imbalanced dataset, the CoronaHack Chest X-Ray dataset provided by Kaggle, through both binary and multi-class classification approaches. Additionally, we evaluated the performance impact of using Focal loss versus Cross-entropy loss in our model. 展开更多
关键词 X-Ray Classification Convolutional Neural network resnet Transfer Learning Supervised Learning COVID-19 Chest X-Ray
下载PDF
An Adapted Convolutional Neural Network for Brain Tumor Detection
15
作者 Kamagaté Beman Hamidja Kanga Koffi +2 位作者 Brou Pacôme Olivier Asseu Souleymane Oumtanaga 《Open Journal of Applied Sciences》 2024年第10期2809-2825,共17页
In medical imaging, particularly for analyzing brain tumor MRIs, the expertise of skilled neurosurgeons or radiologists is often essential. However, many developing countries face a significant shortage of these speci... In medical imaging, particularly for analyzing brain tumor MRIs, the expertise of skilled neurosurgeons or radiologists is often essential. However, many developing countries face a significant shortage of these specialists, which impedes the accurate identification and analysis of tumors. This shortage exacerbates the challenge of delivering precise and timely diagnoses and delays the production of comprehensive MRI reports. Such delays can critically affect treatment outcomes, especially for conditions requiring immediate intervention, potentially leading to higher mortality rates. In this study, we introduced an adapted convolutional neural network designed to automate brain tumor diagnosis. Our model features fewer layers, each optimized with carefully selected hyperparameters. As a result, it significantly reduced both execution time and memory usage compared to other models. Specifically, its execution time was 10 times shorter than that of the referenced models, and its memory consumption was 3 times lower than that of ResNet. In terms of accuracy, our model outperformed all other architectures presented in the study, except for ResNet, which showed similar performance with an accuracy of around 90%. 展开更多
关键词 Brain Tumor MRI Convolutional Neural network KKDNet GoogLeNet DensNet resnet ShuffleNet
下载PDF
基于ResNet的轻量化视频行为识别方法
16
作者 马永航 林志诚 《移动信息》 2024年第1期204-206,共3页
视频行为识别是计算机视觉领域的一个重要研究方向。文中提出了一种基于ResNet-50结构的轻量化视频行为识别方法,以处理视频中丰富而复杂的时空特征。通过增加模型的卷积层深度,能更准确地提取特征,并提高视频行为识别的准确率。研究结... 视频行为识别是计算机视觉领域的一个重要研究方向。文中提出了一种基于ResNet-50结构的轻量化视频行为识别方法,以处理视频中丰富而复杂的时空特征。通过增加模型的卷积层深度,能更准确地提取特征,并提高视频行为识别的准确率。研究结果表明,与传统的卷积神经网络相比,该方法具有更高的准确率。 展开更多
关键词 视频行为识别 残差网络 图像处理 深度学习 神经网络
下载PDF
渐进式多粒度ResNet车型识别网络 被引量:1
17
作者 徐胜军 荆扬 +3 位作者 李海涛 段中兴 刘福友 李明海 《光电工程》 CAS CSCD 北大核心 2023年第7期32-46,共15页
针对车辆因姿态、视角等成像差异造成车型难以识别问题,提出一种基于渐进式多粒度ResNet车型识别网络。首先,以ResNet网络作为主干网络,提出渐进式多粒度局部卷积模块,对不同粒度级别的车辆图像进行局部卷积操作,使网络重构时能够关注... 针对车辆因姿态、视角等成像差异造成车型难以识别问题,提出一种基于渐进式多粒度ResNet车型识别网络。首先,以ResNet网络作为主干网络,提出渐进式多粒度局部卷积模块,对不同粒度级别的车辆图像进行局部卷积操作,使网络重构时能够关注到不同粒度级别的车辆局部特征;其次,对多粒度局部特征图利用随机通道丢弃模块进行随机通道丢弃,抑制网络对车辆显著性区域特征的注意力,提高非显著性特征的关注度;最后,提出一种渐进式多粒度训练模块,在每个训练步骤中增加分类损失,引导网络提取更具辨别力和多样性的车辆多尺度特征。实验结果表明,在Stanford cars数据集、Compcars网络数据集和真实场景下的车型数据集VMRURS上,所提网络的识别准确率分别达到了95.7%、98.8%和97.4%,和对比网络相比,所提网络不仅具有较高的识别准确率,而且具有更好的鲁棒性。 展开更多
关键词 车型识别 resnet网络 渐进式多粒度局部卷积 随机通道丢弃 渐进式多粒度训练
下载PDF
基于注意力机制ResNet轻量网络的面部表情识别 被引量:1
18
作者 赵晓 杨晨 +1 位作者 王若男 李玥辰 《液晶与显示》 CAS CSCD 北大核心 2023年第11期1503-1510,共8页
针对ResNet18网络模型在面部表情识别时存在网络模型大、准确率低等问题,提出了一种基于注意力机制ResNet轻量网络模型(Multi-Scale CBAM Lightweight ResNet,MCLResNet),能够以较少的参数量、较高的准确率实现面部表情的识别。首先,采... 针对ResNet18网络模型在面部表情识别时存在网络模型大、准确率低等问题,提出了一种基于注意力机制ResNet轻量网络模型(Multi-Scale CBAM Lightweight ResNet,MCLResNet),能够以较少的参数量、较高的准确率实现面部表情的识别。首先,采用ResNet18作为主干网络提取特征,引入分组卷积减少ResNet18的参数量;利用倒残差结构增加网络深度,优化了图像特征提取效果。其次,将CBAM(Convolutional Block Attention Module)通道注意力模块中的共享全连接层替换为1×3的卷积模块,有效减少了通道信息的丢失;在CBAM空间注意力模块中添加多尺度卷积模块获得了不同尺度的空间特征信息。最后,将多尺度空间特征融合的CBAM模块(Multi-Scale CBAM,MSCBAM)添加到轻量的ResNet模型中,有效增加了网络模型的特征表达能力,另外在引入MSCBAM的网络模型输出层增加一层全连接层,以此增加模型在输出时的非线性表示。该模型在FER2013和CK+数据集上的实验结果表明,本文提出的模型参数量相比ResNet18下降82.58%,并且有较好的识别准确率。 展开更多
关键词 resnet轻量网络 多尺度空间特征融合 面部表情识别 注意力机制
下载PDF
ResNet-LSTM并行网络转子故障迁移诊断方法 被引量:1
19
作者 向玲 张兴宇 +2 位作者 胡爱军 邴汉昆 杨鑫 《动力工程学报》 CAS CSCD 北大核心 2023年第1期41-47,共7页
为提高小样本下的转子故障识别精度,提出了基于残差网络(ResNet)和长短期记忆网络(LSTM)的并行神经网络(RLPN)转子故障迁移诊断方法。首先,使用卷积层和池化层作为模型的前置特征提取器,提取信号的浅层特征;然后,利用ResNet模块提取转... 为提高小样本下的转子故障识别精度,提出了基于残差网络(ResNet)和长短期记忆网络(LSTM)的并行神经网络(RLPN)转子故障迁移诊断方法。首先,使用卷积层和池化层作为模型的前置特征提取器,提取信号的浅层特征;然后,利用ResNet模块提取转子信号的空间特征,利用LSTM模块提取转子信号的时间特征;最后将提取的时间和空间特征融合,对转子的不同工况开展迁移学习,以实现故障诊断。结果表明:该方法能够提升故障的分类性能,有效识别转子故障,诊断结果优于已有的智能故障迁移诊断方法。 展开更多
关键词 故障诊断 转子故障 残差网络 长短期记忆网络 并行神经网络
下载PDF
基于ResNet-ABiLSTM的滚动轴承剩余寿命预测 被引量:1
20
作者 刘文广 司永战 《机电工程》 CAS 北大核心 2023年第6期903-909,共7页
传统数据驱动的方法过度依赖先验知识且特征提取能力不足,从而导致预测精度不高等后果。针对这一问题,提出了一种带有自注意力机制(SAM)的残差网络(ResNet)与双向长短时记忆网络(BiLSTM)结合的剩余使用寿命(RUL)预测方法(ResNet-ABiLSTM... 传统数据驱动的方法过度依赖先验知识且特征提取能力不足,从而导致预测精度不高等后果。针对这一问题,提出了一种带有自注意力机制(SAM)的残差网络(ResNet)与双向长短时记忆网络(BiLSTM)结合的剩余使用寿命(RUL)预测方法(ResNet-ABiLSTM)。首先,对采集的原始监测信号进行了标准化处理,并采用滑窗法对处理后的数据进行了重采样,以实现数据的扩充目标;然后,通过采用残差网络和双向长短时记忆网络,分别提取了数据空间维度和时间维度上的深层特征,同时引入了自注意力机制,关注了时空维度上反映设备退化趋势的更重要的特征;最后,采用PHM2012轴承数据集对预测效果进行了验证,并将其结果与CNN-LSTM、ResNet-BiLSTM、HI-GRNN、CNN-HI、ResNet-CBAM、DRN-BiGRU等方法的预测结果进行了对比分析。研究结果表明:采用ResNet-ABiLSTM方法的两项误差值(RMSE、MAE)分别取得了0.037、0.029的最低值,其效果显著优于其他对比方法;该结果验证了ResNet-ABiLSTM方法对轴承RUL预测的准确性和有效性。 展开更多
关键词 滚动轴承 剩余使用寿命 残差网络 双向长短时记忆网络 自注意力机制
下载PDF
上一页 1 2 16 下一页 到第
使用帮助 返回顶部