In this work,the Fukui functions of the two ~2P resonance states of Be,a ~2P resonance state of Mg~–,and a ~2D resonance state of Ca~– have been determined.The trajectories of these resonance states,in conjunction w...In this work,the Fukui functions of the two ~2P resonance states of Be,a ~2P resonance state of Mg~–,and a ~2D resonance state of Ca~– have been determined.The trajectories of these resonance states,in conjunction with the complex rotation of the Hamiltonian,were used to determine their wave functions.The electron densities,Fukui functions,and values of the hyper-radius<r^2>were computed from these wave functions.The Fukui functions have negative regions in the valence shell in addition to the inner shell regions,indicating screening effects of the outer temporary electron.Selected configuration interactions with up to quadruple excitations were used along the trajectories and for computing the final wave function.Based on this data,the densities,Fukui functions,and<r^2>were calculated.展开更多
The partial potential energy surface of the I + HI →IH + I reaction involving the translational and vibrational motions has been constructed at the QCISD( T )//MP4SDQ level with the pseudo potential method that i...The partial potential energy surface of the I + HI →IH + I reaction involving the translational and vibrational motions has been constructed at the QCISD( T )//MP4SDQ level with the pseudo potential method that is helpful to interpreting the scattering resonance states. The lifetimes of the scattering resonance states in the title reaction obtained from the partial potential energy surface are about 90-120 fs, which agrees with the result of high-resolved threshold photodetachment spectroscopy of anion IHI^- measured by Neumark.展开更多
An extended linear combination of arrangement channels-scattering wave-function(LCAC-SW) quantum scattering dynamic method combined with ab initio quantum chemical calculation was used to study the formation mecha...An extended linear combination of arrangement channels-scattering wave-function(LCAC-SW) quantum scattering dynamic method combined with ab initio quantum chemical calculation was used to study the formation mechanism of the resonance states for the collinear Na+I 2→Na ++I - 2 ion-pair formation process on Aten-Lanting-Los potential energy surface. The resonance energy and the resonance width or the lifetime for the first resonance peak were calculated. The resonance can be identified as the Feshbach type and the physical interpretation is given. The geometric structure of the resonance state for the title system has been optimized.展开更多
Based on the vibrational potential curves coupled with the minimum energy reaction path, the partial potential energy surface of the reaction I+HI→IH+I was constructed at the QCISD(T)//MP4SDQ level with pseudo po...Based on the vibrational potential curves coupled with the minimum energy reaction path, the partial potential energy surface of the reaction I+HI→IH+I was constructed at the QCISD(T)//MP4SDQ level with pseudo potential method. And the formation mechanism of the scattering resonance states of this reaction was well interpreted with the partial potential energy surface. The scattering resonance states of this reaction should belong to Feshbach resonance because of the coupling of the vibrational mode and the translational mode. With the one-dimensional square potential well model, the resonance width and lifetime of the I+HI(v=0)→IH(v'=0)+I state-to-state reaction were calculated, which preferably explained the high-resolved threshold photodetachment spectroscopy of the IHI- anion performed by Neumark et al..展开更多
The partial potential energy surface was constructed by ab initio method [QCISD(T)/6- 311++G(2df,2pd)]for F+CH4→HF+CH3 reaction system. It not only explained the reaction mechanism brought forward by Diego Tr...The partial potential energy surface was constructed by ab initio method [QCISD(T)/6- 311++G(2df,2pd)]for F+CH4→HF+CH3 reaction system. It not only explained the reaction mechanism brought forward by Diego Troya by means of quasiclassical trajectory (QCT) but also successfully validated Kopin Liu's experimental phenomena about the existence of the reactive resonance. The lifetime of the scattering resonance state was about 0.07 ps. All these were in agreement with the experiments.展开更多
The Schrodinger equation with a Yukawa type of potential is solved analytically.When different boundary conditions are taken into account,a series of solutions are indicated as a Bessel function,the first kind of Hank...The Schrodinger equation with a Yukawa type of potential is solved analytically.When different boundary conditions are taken into account,a series of solutions are indicated as a Bessel function,the first kind of Hankel function and the second kind of Hankel function,respectively.Subsequently,the scattering processes of K^(*)and D^(*)are investigated.In the K^(*)sector,the f_(1)(1285)particle is treated as a K^(*)bound state,therefore,the coupling constant in the K^(*)Yukawa potential can be fixed according to the binding energy of the f_(1)(1285)particle.Consequently,a K^(*)resonance state is generated by solving the Schrodinger equation with the outgoing wave condition,which lies at 1417-i18 MeV on the complex energy plane.It is reasonable to assume that the K^(*)resonance state at 1417-i18 MeV might correspond to the f_(1)(1420)particle in the review of the Particle Data Group.In the D^(*)sector,since the X(3872)particle is almost located at the D^(*)threshold,its binding energy is approximately equal to zero.Therefore,the coupling constant in the D^(*)Yukawa potential is determined,which is related to the first zero point of the zero-order Bessel function.Similarly to the K^(*)case,four resonance states are produced as solutions of the Schrodinger equation with the outgoing wave condition.It is assumed that the resonance states at 3885~i1 MeV,4029-i108 MeV,4328-i191 MeV and 4772-i267 MeV might be associated with the Zc(3900),the X(3940),theχ_(c1)(4274)andχ_(c1)(4685)particles,respectively.It is noted that all solutions are isospin degenerate.展开更多
We provide an investigation of the spectroscopic factor of resonance states in A=5-8 nuclei,utilizing the Gamow shell model(GSM).Within the GSM,the configuration mixing is taken into account exactly with the shell mod...We provide an investigation of the spectroscopic factor of resonance states in A=5-8 nuclei,utilizing the Gamow shell model(GSM).Within the GSM,the configuration mixing is taken into account exactly with the shell model framework,and the continuum coupling is addressed via the complex-energy Berggren ensemble,which treats bound,resonance,and non-resonant continuum single-particle states on an equal footing.As a result,both the configuration mixing and continuum coupling are meticulously considered in the GSM.We first calculate the low-lying states of helium isotopes and isotones with the GSM,and the results are compared with that of ab initio no-core shell model(NCSM)calculations.The results indicate that GSM can reproduce the low-lying resonance states more accurately than the NCSM.Following this,we delve into the spectroscopic factors of the resonance states as computed through both GSM and NCSM,concurrently conducting systematic calculations of overlap functions pertinent to these resonance states.Finally,the calculated overlap function and spectroscopic factor of6He(01+)■νp3/2→^(7)He(3/2_(1)-)with GSM are compared with the results from ab initio NCSM,variational Monte Carlo,and Green’s function Monte Carlo calculations,as well as available experimental data.The results assert that wave function asymptotes can only be reproduced in GSM,where resonance and continuum coupling are precisely addressed.展开更多
Single-particle resonance states of 122Zr are studied in the real stabilization method within the framework of relativistic mean field theory. Two effcient methods are adopted to extract the resonance energy and width...Single-particle resonance states of 122Zr are studied in the real stabilization method within the framework of relativistic mean field theory. Two effcient methods are adopted to extract the resonance energy and width of 122Zr. The results are compared with those obtained from the analytic continuation in the coupling approach and scattering phase-shift methods.展开更多
The partial potential energy surface(PPES) of Br+HBr(v=0)→BrH(v'=0)+Br was designed by coupling the vibration energy and the minimum energy of the corresponding reaction path, Vmep. All the calculations were...The partial potential energy surface(PPES) of Br+HBr(v=0)→BrH(v'=0)+Br was designed by coupling the vibration energy and the minimum energy of the corresponding reaction path, Vmep. All the calculations were performed at the theoritical level of QCISD(T)/6-311++G**//MP2/6-31 1++G**. Based on the analysis of PPES, the dynamic "Eyring Lake" mechanism gave birth to the scattering resonance state. The resonance energy was also obtained via PPES. Then a lifetime matrix of the resonance state was established by solving the translational wave-function via the numerical propagation method. Then the reaction resonance lifetime was calculated to be 125 fs. It is in good agreement with the experimental result.展开更多
The exploration of spin symmetry (SS) in nuclear physics has been instrumental in identifying atomic nucleus structures.In this study,we solve the Dirac equation from the relativistic mean field (RMF) in complex momen...The exploration of spin symmetry (SS) in nuclear physics has been instrumental in identifying atomic nucleus structures.In this study,we solve the Dirac equation from the relativistic mean field (RMF) in complex momentum representation.We investigated SS and its breaking in single-particle resonant states within deformed nuclei,with a focus on the illustrative nucleus168Er.This was the initial discovery of a resonant spin doublet in a deformed nucleus,with the expectation of the SS approaching the continuum threshold.With increasing single-particle energy,the splitting of the resonant spin doublets widened significantly.This escalating splitting implies diminishing adherence to the SS,indicating a departure from the expected behavior as the energy levels increase.We also analyzed the width of the resonant states,showing that lower orbital angular momentum resonances possess shorter decay times and that SS is preserved within broad resonant doublets,as opposed to narrow resonant doublets.Comparing the radial density of the upper components for the bound-state and resonant-state doublets,it becomes evident that while SS is well-preserved in the bound states,it deteriorates in the resonant states.The impact of nuclear deformation (β_(2)) on SS was examined,demonstrating that an increase in β_(2) resulted in higher energy and width splitting in the resonant spin doublets,which is attributed to increased component mixing.Furthermore,the sensitivity of spin doublets to various potential parameters such as surface diffuseness (a),radius (R),and depth (Σ0) is discussed,emphasizing the role of these parameters in SS.This study provides valuable insights into the behavior of spin doublets in deformed nuclei and their interplay with the nuclear structure,thereby advancing our understanding of SS in the resonance state.展开更多
There are still debates on whether the observed zero energy peak in the experiment by Stevan et al. [Science 346 (2014) 602] reveals the existence of the long pursued Ala.jorana bound states (MBSs). We propose tha...There are still debates on whether the observed zero energy peak in the experiment by Stevan et al. [Science 346 (2014) 602] reveals the existence of the long pursued Ala.jorana bound states (MBSs). We propose that, by mounting two scanning tunneling microscopic tips on top of the topological superconducting chain and measuring the transmission spectrum between these two metallic tips, there are two kinds of characteristics on the spectrum that are caused by A.IBSs uniquely: One is symmetric peaks with respect to zero energy and the other is 4~r period caused by a nearby dosephson junction. The former refers to the fact that MBSs are eomposited by Alajorana fermions which distributed in the particle and hole subspaees equally. The latter is based on the well known 4w period of Josephson effect in topological superconductor. We think that such two characteristics can be used as criteria to distinguish MBSs from other candidates, such as impurities, Kondo effect and traditional Andreev bound states.展开更多
This paper calculates the lifetime of resonant state and transmission probability of a single electron tunnelling in a spherical quantum dot (SQD) structure by using the transfer matrix technique. In the SQD, the el...This paper calculates the lifetime of resonant state and transmission probability of a single electron tunnelling in a spherical quantum dot (SQD) structure by using the transfer matrix technique. In the SQD, the electron is confined both transversally and longitudinally, the motion in the transverse and longitudinal directions is separated by using the adiabatic approximation theory. Meanwhile, the energy levels of the former are considered as the effective confining potential. The numerical calculations are carried out for the SQD consisting of GaAs/InAs material. The obtained results show that the bigger radius of the quantum dot not only leads significantly to the shifts of resonant peaks toward the low-energy region, but also causes the lengthening of the lifetime of resonant state. The lifetime of resonant state can be calculated from the uncertainty principle between the energy half width and lifetime.展开更多
We propose a scheme for generating squeezed states based on a superconducting hybrid system. Our system consists of a nanomeehanical resonator, a superconducting flux qubit, and a superconducting transmission line res...We propose a scheme for generating squeezed states based on a superconducting hybrid system. Our system consists of a nanomeehanical resonator, a superconducting flux qubit, and a superconducting transmission line resonator. Using our proposal, one can easily generate the squeezed states of the nanomechanical resonator. In our scheme, the nonlinear interaction between the nanomechanical resonator and the superconducting transmission line resonator can be implemented by the flux qubit as 'nonlinear media' with a tunable Josephson energy. The realization of the nonlinearity does not need any operations on the flux qubit and just needs to adiabatically keep it at the ground state, which can greatly decrease the effect of the decoherenee of the flux qubit on the squeezed ef^ciency.展开更多
The Lorentz force equation F = q(E + v × B), which has been used by the engineering community since the early 20th century to control the motion of electrons on free trajectories, in a wide range of technical app...The Lorentz force equation F = q(E + v × B), which has been used by the engineering community since the early 20th century to control the motion of electrons on free trajectories, in a wide range of technical applications, is a generalized equation that was originally developed by Hendrik Antoon Lorentz at the beginning of the 20th century, and which treats, in a single formulation, two very different aspects of the behavior of free-moving electrons. This article aims to put into perspective the historical context in which the equation was developed, and to clarify how its two different aspects can be clearly separated for practical computational purposes and used in fundamental research in physics, to help reconcile classical/relativistic mechanics and quantum mechanics with electromagnetism, and in particular how its first term can be related to gravitation while its second term can be related to measurable mass from the electromagnetic perspective.展开更多
The properties of exotic nuclei are the focus of the present research.Two-neutron halo structures of neutron-rich17,19B were experimentally confirmed.We studied the formation mechanism of halo phenomena in17,19B using...The properties of exotic nuclei are the focus of the present research.Two-neutron halo structures of neutron-rich17,19B were experimentally confirmed.We studied the formation mechanism of halo phenomena in17,19B using the complex momentum representation method applied to deformation and continuum coupling.By examining the evolution of the weakly bound and resonant levels near the Fermi surface,s–d orbital reversals and certain prolate deformations were observed.In addition,by analyzing the evolution of the occupation probabilities and density distributions occupied by valence neutrons,we found that the ground state of15B did not exhibit a halo and the ground states of17B and19B exhibited halos at 0.6≤β2≤0.7 and0.3≤β2≤0.7,respectively.The low-l components in the valence levels that are weakly bound or embedded in the continuous spectrum lead to halo formation.展开更多
BACKGROUND Depression affects more than 350 million people worldwide.In China,4.2%(54 million people)of the total population suffers from depression.Psychotherapy has been shown to change cognition,improve personality...BACKGROUND Depression affects more than 350 million people worldwide.In China,4.2%(54 million people)of the total population suffers from depression.Psychotherapy has been shown to change cognition,improve personality,and enhance the ability to cope with difficulties and setbacks.While pharmacotherapy can reduce symptoms,it is also associated with adverse reactions and relapse after drug withdrawal.Therefore,there has been an increasing emphasis placed on the use of non-pharmacological therapies for depression.The hypothesis of this study was that acupuncture at ghost points combined with fluoxetine would be more effective than fluoxetine alone for the treatment of depression.AIM To investigate the efficacy of acupuncture at ghost points combined with fluoxetine for the treatment of patients with depression.METHODS This randomized controlled trial included patients with mild to moderate depression(n=160).Patients received either acupuncture at ghost points combined with fluoxetine(n=80)or fluoxetine alone(control group,n=80).Needles were retained in place for 30 min,5 times a week;three treatment cycles were administered.The Mann–Whitney U test was used to compare functional magnet resonance imaging parameters,Hamilton depression rating scale(HAMD)scores,and self-rating depression scale(SDS)scores between the acupuncture group and control group.RESULTS There were no significant differences in HAMD or SDS scores between the acupuncture group and control group,before or after 4 wk of treatment.The acupuncture group exhibited significantly lower HAMD and SDS scores than the control group after 8 wk of treatment(P<0.05).The acupuncture group had significantly lower fractional Amplitude of Low Frequency Fluctuations values for the left anterior wedge leaf,left posterior cingulate gyrus,left middle occipital gyrus,and left inferior occipital gyrus after 8 wk.The acupuncture group also had significantly higher values for the right inferior frontal gyrus,right insula,and right hippocampus(P<0.05).After 8 wk of treatment,the effective rates of the acupuncture and control groups were 51.25%and 36.25%,respectively(P<0.05).CONCLUSION The study results suggest that acupuncture at ghost points combined with fluoxetine is more effective than fluoxetine alone for the treatment of patients with mild to moderate depression.展开更多
The self-consistent quadruple potential is deduced within the relativistic mean-field(RMF)framework and substituted into the Hamiltonian,which is calculated using the complex momentum representation(CMR).Considering e...The self-consistent quadruple potential is deduced within the relativistic mean-field(RMF)framework and substituted into the Hamiltonian,which is calculated using the complex momentum representation(CMR).Considering even-even titanium isotopes as an example,this study investigated various properties,including the resonant states of neutron-rich nuclei in the RMF-CMR model,and used them to describe the binding energy.The abrupt decrease in the two-neutron separation energy(S_(2n))corresponds to the traditional magic number.The resonant and bound states are simultaneously exposed in the complex moment plane,where the continuum is along the integration contour.The four oblate neutron-rich nuclei^(72-78)Ti are weakly bound or resonant because their Fermi energies are approximately 0 MeV.The root-meansquare(RMS)radii of these nuclei increase suddenly compared with those of others(neutron number N<48).Moreover,^(78)Ti and^(76)Ti are determined as drip-line nucleons by the value of S_(2n) and the energy levels,respectively.Finally,the weak-bounded character can be represented by diffuse density probability distributions.展开更多
Different causative factors acting on the pancreas can result in diseases such as pancreatitis, diabetes and pancreatic tumors. The high incidence and mortality of pancreatic diseases have placed diagnostic imaging in...Different causative factors acting on the pancreas can result in diseases such as pancreatitis, diabetes and pancreatic tumors. The high incidence and mortality of pancreatic diseases have placed diagnostic imaging in a crucial position in daily clinical practice. In this minireview article different pancreatic imaging techniques are discussed, from the standard clinical imaging modalities and state of the art clinical magnetic resonance imaging techniques to current situations in pre-clinical pancreatic imaging studies. In particular, the challenges of pre-clinical rodent pancreatic imaging are addressed, with both the image acquisition techniques and the post-processing methods for rodent pancreatic imaging elaborated.展开更多
In atomic,molecular,and nuclear physics,the method of complex coordinate rotation is a widely used theoretical tool for studying resonant states.Here,we propose a novel implementation of this method based on the gradi...In atomic,molecular,and nuclear physics,the method of complex coordinate rotation is a widely used theoretical tool for studying resonant states.Here,we propose a novel implementation of this method based on the gradient optimization(CCR-GO).The main strength of the CCR-GO method is that it does not require manual adjustment of optimization parameters in the wave function;instead,a mathematically well-defined optimization path can be followed.Our method is proven to be very efficient in searching resonant positions and widths over a variety of few-body atomic systems,and can significantly improve the accuracy of the results.As a special case,the CCR-GO method is equally capable of dealing with bound-state problems with high accuracy,which is traditionally achieved through the usual extreme conditions of energy itself.展开更多
Energies, widths and wave functions of the single-particle resonant continuum are determined by solving scattering states of the Dirac equation with proper asymptotic conditions for the continuous spectrum in the rela...Energies, widths and wave functions of the single-particle resonant continuum are determined by solving scattering states of the Dirac equation with proper asymptotic conditions for the continuous spectrum in the relativistic mean-field theory. The relativistic regular and irregular Coulomb wave functions are calculated numerically. The resonance states in the continuum for some closed- or sub-closed-shell nucleus in Sn-isotopes, such as <SUP>114</SUP>Sn, <SUP>116</SUP>Sn, <SUP>118</SUP>Sn, and <SUP>120</SUP>Sn are calculated. Results show that the S-matrix method is a reliable and straightforward way in determining energies and widths of resonant states.展开更多
文摘In this work,the Fukui functions of the two ~2P resonance states of Be,a ~2P resonance state of Mg~–,and a ~2D resonance state of Ca~– have been determined.The trajectories of these resonance states,in conjunction with the complex rotation of the Hamiltonian,were used to determine their wave functions.The electron densities,Fukui functions,and values of the hyper-radius<r^2>were computed from these wave functions.The Fukui functions have negative regions in the valence shell in addition to the inner shell regions,indicating screening effects of the outer temporary electron.Selected configuration interactions with up to quadruple excitations were used along the trajectories and for computing the final wave function.Based on this data,the densities,Fukui functions,and<r^2>were calculated.
基金Supported by the National Natural Science Foundation of China(No. 20173032) Ph. D. Special Research Foundation ofMinistry of Education of China(No. 20020422027).
文摘The partial potential energy surface of the I + HI →IH + I reaction involving the translational and vibrational motions has been constructed at the QCISD( T )//MP4SDQ level with the pseudo potential method that is helpful to interpreting the scattering resonance states. The lifetimes of the scattering resonance states in the title reaction obtained from the partial potential energy surface are about 90-120 fs, which agrees with the result of high-resolved threshold photodetachment spectroscopy of anion IHI^- measured by Neumark.
基金Supported by the National Natural Science Foundation of China( No.2 0 1730 32 ) and the Ph.D.Special Research Foun-dation of Chinese Education Ministry
文摘An extended linear combination of arrangement channels-scattering wave-function(LCAC-SW) quantum scattering dynamic method combined with ab initio quantum chemical calculation was used to study the formation mechanism of the resonance states for the collinear Na+I 2→Na ++I - 2 ion-pair formation process on Aten-Lanting-Los potential energy surface. The resonance energy and the resonance width or the lifetime for the first resonance peak were calculated. The resonance can be identified as the Feshbach type and the physical interpretation is given. The geometric structure of the resonance state for the title system has been optimized.
基金Ⅴ. ACKN0WLEDGMENTS This work was supported by the National Natural Science Foundation of China (No.20573064) and Ph.D. Special Research Foundation of Chinese Education Department.
文摘Based on the vibrational potential curves coupled with the minimum energy reaction path, the partial potential energy surface of the reaction I+HI→IH+I was constructed at the QCISD(T)//MP4SDQ level with pseudo potential method. And the formation mechanism of the scattering resonance states of this reaction was well interpreted with the partial potential energy surface. The scattering resonance states of this reaction should belong to Feshbach resonance because of the coupling of the vibrational mode and the translational mode. With the one-dimensional square potential well model, the resonance width and lifetime of the I+HI(v=0)→IH(v'=0)+I state-to-state reaction were calculated, which preferably explained the high-resolved threshold photodetachment spectroscopy of the IHI- anion performed by Neumark et al..
基金the support of the Grant from the National Natural Science Foundation of China No.20573064 Ph.D.Special Research Foundation of Chinese Education Department.
文摘The partial potential energy surface was constructed by ab initio method [QCISD(T)/6- 311++G(2df,2pd)]for F+CH4→HF+CH3 reaction system. It not only explained the reaction mechanism brought forward by Diego Troya by means of quasiclassical trajectory (QCT) but also successfully validated Kopin Liu's experimental phenomena about the existence of the reactive resonance. The lifetime of the scattering resonance state was about 0.07 ps. All these were in agreement with the experiments.
文摘The Schrodinger equation with a Yukawa type of potential is solved analytically.When different boundary conditions are taken into account,a series of solutions are indicated as a Bessel function,the first kind of Hankel function and the second kind of Hankel function,respectively.Subsequently,the scattering processes of K^(*)and D^(*)are investigated.In the K^(*)sector,the f_(1)(1285)particle is treated as a K^(*)bound state,therefore,the coupling constant in the K^(*)Yukawa potential can be fixed according to the binding energy of the f_(1)(1285)particle.Consequently,a K^(*)resonance state is generated by solving the Schrodinger equation with the outgoing wave condition,which lies at 1417-i18 MeV on the complex energy plane.It is reasonable to assume that the K^(*)resonance state at 1417-i18 MeV might correspond to the f_(1)(1420)particle in the review of the Particle Data Group.In the D^(*)sector,since the X(3872)particle is almost located at the D^(*)threshold,its binding energy is approximately equal to zero.Therefore,the coupling constant in the D^(*)Yukawa potential is determined,which is related to the first zero point of the zero-order Bessel function.Similarly to the K^(*)case,four resonance states are produced as solutions of the Schrodinger equation with the outgoing wave condition.It is assumed that the resonance states at 3885~i1 MeV,4029-i108 MeV,4328-i191 MeV and 4772-i267 MeV might be associated with the Zc(3900),the X(3940),theχ_(c1)(4274)andχ_(c1)(4685)particles,respectively.It is noted that all solutions are isospin degenerate.
基金supported by the National Natural Science Foundation of China(Grant Nos.12205340,12175281,and 11975282)the Gansu Natural Science Foundation(Grant No.22JR5RA123)+3 种基金the Strategic Priority Research Program of Chinese Academy of Sciences(Grant No.XDB34000000)the Key Research Program of the Chinese Academy of Sciences(Grant No.XDPB15)the State Key Laboratory of Nuclear Physics and TechnologyPeking University(Grant No.NPT2020KFY13)。
文摘We provide an investigation of the spectroscopic factor of resonance states in A=5-8 nuclei,utilizing the Gamow shell model(GSM).Within the GSM,the configuration mixing is taken into account exactly with the shell model framework,and the continuum coupling is addressed via the complex-energy Berggren ensemble,which treats bound,resonance,and non-resonant continuum single-particle states on an equal footing.As a result,both the configuration mixing and continuum coupling are meticulously considered in the GSM.We first calculate the low-lying states of helium isotopes and isotones with the GSM,and the results are compared with that of ab initio no-core shell model(NCSM)calculations.The results indicate that GSM can reproduce the low-lying resonance states more accurately than the NCSM.Following this,we delve into the spectroscopic factors of the resonance states as computed through both GSM and NCSM,concurrently conducting systematic calculations of overlap functions pertinent to these resonance states.Finally,the calculated overlap function and spectroscopic factor of6He(01+)■νp3/2→^(7)He(3/2_(1)-)with GSM are compared with the results from ab initio NCSM,variational Monte Carlo,and Green’s function Monte Carlo calculations,as well as available experimental data.The results assert that wave function asymptotes can only be reproduced in GSM,where resonance and continuum coupling are precisely addressed.
基金Supported by National Natural Science Foundation of China (10435010, 10575083, 10475033, 10221003)
文摘Single-particle resonance states of 122Zr are studied in the real stabilization method within the framework of relativistic mean field theory. Two effcient methods are adopted to extract the resonance energy and width of 122Zr. The results are compared with those obtained from the analytic continuation in the coupling approach and scattering phase-shift methods.
基金the National Natural Science Foundation of China
文摘The partial potential energy surface(PPES) of Br+HBr(v=0)→BrH(v'=0)+Br was designed by coupling the vibration energy and the minimum energy of the corresponding reaction path, Vmep. All the calculations were performed at the theoritical level of QCISD(T)/6-311++G**//MP2/6-31 1++G**. Based on the analysis of PPES, the dynamic "Eyring Lake" mechanism gave birth to the scattering resonance state. The resonance energy was also obtained via PPES. Then a lifetime matrix of the resonance state was established by solving the translational wave-function via the numerical propagation method. Then the reaction resonance lifetime was calculated to be 125 fs. It is in good agreement with the experimental result.
基金supported by the National Natural Science Foundation of China(No.11935001)the Natural Science Foundation of Anhui Province(No.2008085MA26).
文摘The exploration of spin symmetry (SS) in nuclear physics has been instrumental in identifying atomic nucleus structures.In this study,we solve the Dirac equation from the relativistic mean field (RMF) in complex momentum representation.We investigated SS and its breaking in single-particle resonant states within deformed nuclei,with a focus on the illustrative nucleus168Er.This was the initial discovery of a resonant spin doublet in a deformed nucleus,with the expectation of the SS approaching the continuum threshold.With increasing single-particle energy,the splitting of the resonant spin doublets widened significantly.This escalating splitting implies diminishing adherence to the SS,indicating a departure from the expected behavior as the energy levels increase.We also analyzed the width of the resonant states,showing that lower orbital angular momentum resonances possess shorter decay times and that SS is preserved within broad resonant doublets,as opposed to narrow resonant doublets.Comparing the radial density of the upper components for the bound-state and resonant-state doublets,it becomes evident that while SS is well-preserved in the bound states,it deteriorates in the resonant states.The impact of nuclear deformation (β_(2)) on SS was examined,demonstrating that an increase in β_(2) resulted in higher energy and width splitting in the resonant spin doublets,which is attributed to increased component mixing.Furthermore,the sensitivity of spin doublets to various potential parameters such as surface diffuseness (a),radius (R),and depth (Σ0) is discussed,emphasizing the role of these parameters in SS.This study provides valuable insights into the behavior of spin doublets in deformed nuclei and their interplay with the nuclear structure,thereby advancing our understanding of SS in the resonance state.
文摘There are still debates on whether the observed zero energy peak in the experiment by Stevan et al. [Science 346 (2014) 602] reveals the existence of the long pursued Ala.jorana bound states (MBSs). We propose that, by mounting two scanning tunneling microscopic tips on top of the topological superconducting chain and measuring the transmission spectrum between these two metallic tips, there are two kinds of characteristics on the spectrum that are caused by A.IBSs uniquely: One is symmetric peaks with respect to zero energy and the other is 4~r period caused by a nearby dosephson junction. The former refers to the fact that MBSs are eomposited by Alajorana fermions which distributed in the particle and hole subspaees equally. The latter is based on the well known 4w period of Josephson effect in topological superconductor. We think that such two characteristics can be used as criteria to distinguish MBSs from other candidates, such as impurities, Kondo effect and traditional Andreev bound states.
基金Project supported by the National Nature Science Foundation of China (Grant No 10347004).
文摘This paper calculates the lifetime of resonant state and transmission probability of a single electron tunnelling in a spherical quantum dot (SQD) structure by using the transfer matrix technique. In the SQD, the electron is confined both transversally and longitudinally, the motion in the transverse and longitudinal directions is separated by using the adiabatic approximation theory. Meanwhile, the energy levels of the former are considered as the effective confining potential. The numerical calculations are carried out for the SQD consisting of GaAs/InAs material. The obtained results show that the bigger radius of the quantum dot not only leads significantly to the shifts of resonant peaks toward the low-energy region, but also causes the lengthening of the lifetime of resonant state. The lifetime of resonant state can be calculated from the uncertainty principle between the energy half width and lifetime.
基金Supported by the National Natural Science Foundation of China under Grant Nos 11274043 and 60978009the Major Research Plan of the National Natural Science Foundation of China under Grant No 91121023
文摘We propose a scheme for generating squeezed states based on a superconducting hybrid system. Our system consists of a nanomeehanical resonator, a superconducting flux qubit, and a superconducting transmission line resonator. Using our proposal, one can easily generate the squeezed states of the nanomechanical resonator. In our scheme, the nonlinear interaction between the nanomechanical resonator and the superconducting transmission line resonator can be implemented by the flux qubit as 'nonlinear media' with a tunable Josephson energy. The realization of the nonlinearity does not need any operations on the flux qubit and just needs to adiabatically keep it at the ground state, which can greatly decrease the effect of the decoherenee of the flux qubit on the squeezed ef^ciency.
文摘The Lorentz force equation F = q(E + v × B), which has been used by the engineering community since the early 20th century to control the motion of electrons on free trajectories, in a wide range of technical applications, is a generalized equation that was originally developed by Hendrik Antoon Lorentz at the beginning of the 20th century, and which treats, in a single formulation, two very different aspects of the behavior of free-moving electrons. This article aims to put into perspective the historical context in which the equation was developed, and to clarify how its two different aspects can be clearly separated for practical computational purposes and used in fundamental research in physics, to help reconcile classical/relativistic mechanics and quantum mechanics with electromagnetism, and in particular how its first term can be related to gravitation while its second term can be related to measurable mass from the electromagnetic perspective.
基金the National Natural Science Foundation of China(Nos.12205001,11935001,and 12204001)the Scientific Research program of Anhui University of Finance and Economics(Nos.ACKYC22080 and ACKYC220801).
文摘The properties of exotic nuclei are the focus of the present research.Two-neutron halo structures of neutron-rich17,19B were experimentally confirmed.We studied the formation mechanism of halo phenomena in17,19B using the complex momentum representation method applied to deformation and continuum coupling.By examining the evolution of the weakly bound and resonant levels near the Fermi surface,s–d orbital reversals and certain prolate deformations were observed.In addition,by analyzing the evolution of the occupation probabilities and density distributions occupied by valence neutrons,we found that the ground state of15B did not exhibit a halo and the ground states of17B and19B exhibited halos at 0.6≤β2≤0.7 and0.3≤β2≤0.7,respectively.The low-l components in the valence levels that are weakly bound or embedded in the continuous spectrum lead to halo formation.
基金Supported by Shanghai Science and Technology Commission TCM Guidance Project,No.19401935500Shanghai University of Traditional Chinese Medicine Budget Scientific Research Project,No.2020LK079Medical Innovation Research Special General Project of Shanghai Science and Technology Commission,No.21Y11923500.
文摘BACKGROUND Depression affects more than 350 million people worldwide.In China,4.2%(54 million people)of the total population suffers from depression.Psychotherapy has been shown to change cognition,improve personality,and enhance the ability to cope with difficulties and setbacks.While pharmacotherapy can reduce symptoms,it is also associated with adverse reactions and relapse after drug withdrawal.Therefore,there has been an increasing emphasis placed on the use of non-pharmacological therapies for depression.The hypothesis of this study was that acupuncture at ghost points combined with fluoxetine would be more effective than fluoxetine alone for the treatment of depression.AIM To investigate the efficacy of acupuncture at ghost points combined with fluoxetine for the treatment of patients with depression.METHODS This randomized controlled trial included patients with mild to moderate depression(n=160).Patients received either acupuncture at ghost points combined with fluoxetine(n=80)or fluoxetine alone(control group,n=80).Needles were retained in place for 30 min,5 times a week;three treatment cycles were administered.The Mann–Whitney U test was used to compare functional magnet resonance imaging parameters,Hamilton depression rating scale(HAMD)scores,and self-rating depression scale(SDS)scores between the acupuncture group and control group.RESULTS There were no significant differences in HAMD or SDS scores between the acupuncture group and control group,before or after 4 wk of treatment.The acupuncture group exhibited significantly lower HAMD and SDS scores than the control group after 8 wk of treatment(P<0.05).The acupuncture group had significantly lower fractional Amplitude of Low Frequency Fluctuations values for the left anterior wedge leaf,left posterior cingulate gyrus,left middle occipital gyrus,and left inferior occipital gyrus after 8 wk.The acupuncture group also had significantly higher values for the right inferior frontal gyrus,right insula,and right hippocampus(P<0.05).After 8 wk of treatment,the effective rates of the acupuncture and control groups were 51.25%and 36.25%,respectively(P<0.05).CONCLUSION The study results suggest that acupuncture at ghost points combined with fluoxetine is more effective than fluoxetine alone for the treatment of patients with mild to moderate depression.
基金the National Natural Science Foundation of China(Nos.11935001 and 11875070)Natural Science Foundation of Anhui Province(No.1908085MA16).
文摘The self-consistent quadruple potential is deduced within the relativistic mean-field(RMF)framework and substituted into the Hamiltonian,which is calculated using the complex momentum representation(CMR).Considering even-even titanium isotopes as an example,this study investigated various properties,including the resonant states of neutron-rich nuclei in the RMF-CMR model,and used them to describe the binding energy.The abrupt decrease in the two-neutron separation energy(S_(2n))corresponds to the traditional magic number.The resonant and bound states are simultaneously exposed in the complex moment plane,where the continuum is along the integration contour.The four oblate neutron-rich nuclei^(72-78)Ti are weakly bound or resonant because their Fermi energies are approximately 0 MeV.The root-meansquare(RMS)radii of these nuclei increase suddenly compared with those of others(neutron number N<48).Moreover,^(78)Ti and^(76)Ti are determined as drip-line nucleons by the value of S_(2n) and the energy levels,respectively.Finally,the weak-bounded character can be represented by diffuse density probability distributions.
文摘Different causative factors acting on the pancreas can result in diseases such as pancreatitis, diabetes and pancreatic tumors. The high incidence and mortality of pancreatic diseases have placed diagnostic imaging in a crucial position in daily clinical practice. In this minireview article different pancreatic imaging techniques are discussed, from the standard clinical imaging modalities and state of the art clinical magnetic resonance imaging techniques to current situations in pre-clinical pancreatic imaging studies. In particular, the challenges of pre-clinical rodent pancreatic imaging are addressed, with both the image acquisition techniques and the post-processing methods for rodent pancreatic imaging elaborated.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.91636216,11974382,and 11474316)the Chinese Academy of Sciences Strategic Priority Research Program(Grant No.XDB21020200)+1 种基金by the YIPA Programthe support of NSERC,SHARCnet,ACEnet of Canada。
文摘In atomic,molecular,and nuclear physics,the method of complex coordinate rotation is a widely used theoretical tool for studying resonant states.Here,we propose a novel implementation of this method based on the gradient optimization(CCR-GO).The main strength of the CCR-GO method is that it does not require manual adjustment of optimization parameters in the wave function;instead,a mathematically well-defined optimization path can be followed.Our method is proven to be very efficient in searching resonant positions and widths over a variety of few-body atomic systems,and can significantly improve the accuracy of the results.As a special case,the CCR-GO method is equally capable of dealing with bound-state problems with high accuracy,which is traditionally achieved through the usual extreme conditions of energy itself.
文摘Energies, widths and wave functions of the single-particle resonant continuum are determined by solving scattering states of the Dirac equation with proper asymptotic conditions for the continuous spectrum in the relativistic mean-field theory. The relativistic regular and irregular Coulomb wave functions are calculated numerically. The resonance states in the continuum for some closed- or sub-closed-shell nucleus in Sn-isotopes, such as <SUP>114</SUP>Sn, <SUP>116</SUP>Sn, <SUP>118</SUP>Sn, and <SUP>120</SUP>Sn are calculated. Results show that the S-matrix method is a reliable and straightforward way in determining energies and widths of resonant states.