期刊文献+
共找到501篇文章
< 1 2 26 >
每页显示 20 50 100
Resource Allocation for Cognitive Network Slicing in PD-SCMA System Based on Two-Way Deep Reinforcement Learning
1
作者 Zhang Zhenyu Zhang Yong +1 位作者 Yuan Siyu Cheng Zhenjie 《China Communications》 SCIE CSCD 2024年第6期53-68,共16页
In this paper,we propose the Two-way Deep Reinforcement Learning(DRL)-Based resource allocation algorithm,which solves the problem of resource allocation in the cognitive downlink network based on the underlay mode.Se... In this paper,we propose the Two-way Deep Reinforcement Learning(DRL)-Based resource allocation algorithm,which solves the problem of resource allocation in the cognitive downlink network based on the underlay mode.Secondary users(SUs)in the cognitive network are multiplexed by a new Power Domain Sparse Code Multiple Access(PD-SCMA)scheme,and the physical resources of the cognitive base station are virtualized into two types of slices:enhanced mobile broadband(eMBB)slice and ultrareliable low latency communication(URLLC)slice.We design the Double Deep Q Network(DDQN)network output the optimal codebook assignment scheme and simultaneously use the Deep Deterministic Policy Gradient(DDPG)network output the optimal power allocation scheme.The objective is to jointly optimize the spectral efficiency of the system and the Quality of Service(QoS)of SUs.Simulation results show that the proposed algorithm outperforms the CNDDQN algorithm and modified JEERA algorithm in terms of spectral efficiency and QoS satisfaction.Additionally,compared with the Power Domain Non-orthogonal Multiple Access(PD-NOMA)slices and the Sparse Code Multiple Access(SCMA)slices,the PD-SCMA slices can dramatically enhance spectral efficiency and increase the number of accessible users. 展开更多
关键词 cognitive radio deep reinforcement learning network slicing power-domain non-orthogonal multiple access resource allocation
下载PDF
Optimization of resource allocation in FDD massive MIMO systems
2
作者 Jun Cai Chuan Yin Youwei Ding 《Digital Communications and Networks》 SCIE CSCD 2024年第1期117-125,共9页
The performance of massive MIMO systems relies heavily on the availability of Channel State Information at the Transmitter(CSIT).A large amount of work has been devoted to reducing the CSIT acquisition overhead at the... The performance of massive MIMO systems relies heavily on the availability of Channel State Information at the Transmitter(CSIT).A large amount of work has been devoted to reducing the CSIT acquisition overhead at the pilot training and/or CsI feedback stage.In fact,the downlink communication generally includes three stages,i.e.,pilot training,CsI feedback,and data transmission.These three stages are mutually related and jointly determine the overall system performance.Unfortunately,there exist few studies on the reduction of csIT acquisition overhead from the global point of view.In this paper,we integrate the Minimum Mean Square Error(MMSE)channel estimation,Random Vector Quantization(RVQ)based limited feedback and Maximal Ratio Combining(MRC)precoding into a unified framework for investigating the resource allocation problem.In particular,we first approximate the covariance matrix of the quantization error with a simple expression and derive an analytical expression of the received Signal-to-Noise Ratio(SNR)based on the deterministic equivalence theory.Then the three performance metrics(the spectral efficiency,energy efficiency,and total energy consumption)oriented problems are formulated analytically.With practical system requirements,these three metrics can be collaboratively optimized.Finally,we propose an optimization solver to derive the optimal partition of channel coherence time.Experiment results verify the benefits of the proposed resource allocation schemes under three different scenarios and illustrate the tradeoff of resource allocation between three stages. 展开更多
关键词 Massive MIMO FDD CSIT resource allocation
下载PDF
Resource allocation based on fairness and QoS provisioning for OFDMA-WLAN system 被引量:1
3
作者 鲍楠 夏玮玮 沈连丰 《Journal of Southeast University(English Edition)》 EI CAS 2014年第1期1-6,共6页
To satisfy different service requirements of multiple users in the orthogo nal frequency division multiple access wireless local area network OFDMA-WLAN system downlink transmission a resource allocation algorithm bas... To satisfy different service requirements of multiple users in the orthogo nal frequency division multiple access wireless local area network OFDMA-WLAN system downlink transmission a resource allocation algorithm based on fairness and quality of service QoS provisioning is proposed. Different QoS requirements are converted into different rate requirements to calculate the QoSs atisfaction level.The optimization object is revised as a fairness-driven resource optimization function to provide fairness. The complex resource allocation problem is divided into channel allocation and power assignment sub-problems. The sub-problems are solved by the bipartite graph matching and water-filling based method.Compared with other algorithms the proposed algorithm sacrifices less data rate for higher fairnes and QoS satisfaction.The sim ulation results show that the proposed algorithm is capableo fp rovi ding QoS and fairness and performs better in a tradeoff among QoS fairness and data rate. 展开更多
关键词 QOS quality of service satisfaction level fairness driven function b ipartite graph matching water-f i lling resource allocation
下载PDF
Dynamic resource allocation for high-speed railway downlink MIMO-OFDM system
4
作者 赵宜升 李曦 +1 位作者 李屹 纪红 《Journal of Southeast University(English Edition)》 EI CAS 2012年第3期266-271,共6页
The dynamic resource allocation problem in high-speed railway downlink orthogonal frequency-division multiplexing(OFDM) systems with multiple-input multiple-output(MIMO) antennas is investigated.Sub-carriers,anten... The dynamic resource allocation problem in high-speed railway downlink orthogonal frequency-division multiplexing(OFDM) systems with multiple-input multiple-output(MIMO) antennas is investigated.Sub-carriers,antennas,time slots,and power are jointly considered.The problem of multi-dimensional resource allocation is formulated as a mixed-integer nonlinear programming problem.The effect of the moving speed on Doppler shift is analyzed to calculate the inter-carrier interference power.The optimization objective is to maximize the system throughput under the constraint of a total transmitted power that is no greater than a certain threshold.In order to reduce the computational complexity,a suboptimal solution to the optimization problem is obtained by a two-step method.First,sub-carriers,antennas,and time slots are assigned to users under the assumption of equal power allocation.Next,the power allocation problem is solved according to the result of the first-step resource allocation.Simulation results show that the proposed multi-dimensional resource allocation strategy has a significant performance improvement in terms of system throughput compared with the existing one. 展开更多
关键词 dynamic resource allocation high-speed railway multiple-input multiple-output(MIMO) orthogonal frequency-division multiplexing(OFDM)
下载PDF
Hierarchical resource allocation for integrated modular avionics systems 被引量:8
5
作者 Tianran Zhou Huagang Xiong Zhen Zhang 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2011年第5期780-787,共8页
Recently the integrated modular avionics (IMA) architecture which introduces the concept of resource partitioning becomes popular as an alternative to the traditional federated architecture. A novel hierarchical app... Recently the integrated modular avionics (IMA) architecture which introduces the concept of resource partitioning becomes popular as an alternative to the traditional federated architecture. A novel hierarchical approach is proposed to solve the resource allocation problem for IMA systems in distributed environments. Firstly, the worst case response time of tasks with arbitrary deadlines is analyzed for the two-level scheduler. Then, the hierarchical resource allocation approach is presented in two levels. At the platform level, a task assignment algorithm based on genetic simulated annealing (GSA) is proposed to assign a set of pre-defined tasks to different processing nodes in the form of task groups, so that resources can be allocated as partitions and mapped to task groups. While yielding to all the resource con- straints, the algorithm tries to find an optimal task assignment with minimized communication costs and balanced work load. At the node level, partition parameters are optimized, so that the computational resource can be allocated further. An example is shown to illustrate the hierarchal resource allocation approach and manifest the validity. Simulation results comparing the performance of the proposed GSA with that of traditional genetic algorithms are presented in the context of task assignment in IMA systems. 展开更多
关键词 avionics system engineering integrated modular avionics (IMA) resource allocation hierarchical scheduling genetic algorithm (GA) simulated annealing algorithm.
下载PDF
Optimal distributed resource allocation in a wireless sensor network for control systems 被引量:7
6
作者 MAO Jian-lin WU Zhi-ming 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 SCIE EI CAS CSCD 2007年第1期106-112,共7页
Wireless technology is applied increasingly in networked control systems. A new form of wireless network called wireless sensor network can bring control systems some advantages, such as flexibility and feasibility of... Wireless technology is applied increasingly in networked control systems. A new form of wireless network called wireless sensor network can bring control systems some advantages, such as flexibility and feasibility of network deployment at low costs, while it also raises some new challenges. First, the communication resources shared by all the control loops are limited. Second, the wireless and multi-hop character of sensor network makes the resources scheduling more difficult. Thus, how to effectively allocate the limited communication resources for those control loops is an important problem. In this paper, this problem is formulated as an optimal sampling frequency assignment problem, where the objective function is to maximize the utility of control systems, subject to channel capacity constraints. Then an iterative distributed algorithm based on local buffer information is proposed. Finally, the simulation results show that the proposed algorithm can effectively allocate the limited communication resource in a distributed way. It can achieve the optimal quality of the control system and adapt to the network load changes. 展开更多
关键词 Wireless sensor networks (WSN) Distributed resource allocation Control systems Optimization.
下载PDF
Joint Precoding Schemes for Flexible Resource Allocation in High Throughput Satellite Systems Based on Beam Hopping 被引量:7
7
作者 Chen Zhang Xudong Zhao Gengxin Zhang 《China Communications》 SCIE CSCD 2021年第9期48-61,共14页
Beam hopping technology provides a foundation for the flexible allocation and efficient utilization of satellite resources,which is considered as a key technology for the next generation of high throughput satellite s... Beam hopping technology provides a foundation for the flexible allocation and efficient utilization of satellite resources,which is considered as a key technology for the next generation of high throughput satellite systems.To alleviate the contradiction between resource utilization and co-frequency interference in beam hopping technology,this paper firstly studies dynamic clustering to balance traffic between clusters and proposes cluster hopping pool optimization method to avoid inter-cluster interference.Then based on the optimization results,a novel joint beam hopping and precoding algorithm is provided to combine resource allocation and intra-cluster interference suppression,which can make efficient utilization of system resources and achieve reliable and near-optimal transmission capacity.The simulation results show that,compared with traditional methods,the proposed algorithms can dynamically adjust to balance demand traffic between clusters and meet the service requirements of each beam,also eliminate the co-channel interference to improve the performance of satellite network. 展开更多
关键词 high-throughput satellites satellite-terrestrial networks resource allocation dynamic coverage on demand beam hopping
下载PDF
Adaptive Resource Allocation Algorithm for 5G Vehicular Cloud Communication
8
作者 Huanhuan Li Hongchang Wei +1 位作者 Zheliang Chen Yue Xu 《Computers, Materials & Continua》 SCIE EI 2024年第8期2199-2219,共21页
The current resource allocation in 5G vehicular networks for mobile cloud communication faces several challenges,such as low user utilization,unbalanced resource allocation,and extended adaptive allocation time.We pro... The current resource allocation in 5G vehicular networks for mobile cloud communication faces several challenges,such as low user utilization,unbalanced resource allocation,and extended adaptive allocation time.We propose an adaptive allocation algorithm for mobile cloud communication resources in 5G vehicular networks to address these issues.This study analyzes the components of the 5G vehicular network architecture to determine the performance of different components.It is ascertained that the communication modes in 5G vehicular networks for mobile cloud communication include in-band and out-of-band modes.Furthermore,this study analyzes the single-hop and multi-hop modes in mobile cloud communication and calculates the resource transmission rate and bandwidth in different communication modes.The study also determines the scenario of one-way and two-way vehicle lane cloud communication network connectivity,calculates the probability of vehicle network connectivity under different mobile cloud communication radii,and determines the amount of cloud communication resources required by vehicles in different lane scenarios.Based on the communication status of users in 5G vehicular networks,this study calculates the bandwidth and transmission rate of the allocated channels using Shannon’s formula.It determines the adaptive allocation of cloud communication resources,introduces an objective function to obtain the optimal solution after allocation,and completes the adaptive allocation process.The experimental results demonstrate that,with the application of the proposed method,the maximum utilization of user communication resources reaches approximately 99%.The balance coefficient curve approaches 1,and the allocation time remains under 2 s.This indicates that the proposed method has higher adaptive allocation efficiency. 展开更多
关键词 5G vehicular networks mobile cloud communication resource allocation channel capacity network connectivity communication radius objective function
下载PDF
Learning-based user association and dynamic resource allocation in multi-connectivity enabled unmanned aerial vehicle networks
9
作者 Zhipeng Cheng Minghui Liwang +3 位作者 Ning Chen Lianfen Huang Nadra Guizani Xiaojiang Du 《Digital Communications and Networks》 SCIE CSCD 2024年第1期53-62,共10页
Unmanned Aerial Vehicles(UAvs)as aerial base stations to provide communication services for ground users is a flexible and cost-effective paradigm in B5G.Besides,dynamic resource allocation and multi-connectivity can ... Unmanned Aerial Vehicles(UAvs)as aerial base stations to provide communication services for ground users is a flexible and cost-effective paradigm in B5G.Besides,dynamic resource allocation and multi-connectivity can be adopted to further harness the potentials of UAVs in improving communication capacity,in such situations such that the interference among users becomes a pivotal disincentive requiring effective solutions.To this end,we investigate the Joint UAV-User Association,Channel Allocation,and transmission Power Control(J-UACAPC)problem in a multi-connectivity-enabled UAV network with constrained backhaul links,where each UAV can determine the reusable channels and transmission power to serve the selected ground users.The goal was to mitigate co-channel interference while maximizing long-term system utility.The problem was modeled as a cooperative stochastic game with hybrid discrete-continuous action space.A Multi-Agent Hybrid Deep Reinforcement Learning(MAHDRL)algorithm was proposed to address this problem.Extensive simulation results demonstrated the effectiveness of the proposed algorithm and showed that it has a higher system utility than the baseline methods. 展开更多
关键词 UAV-user association Multi-connectivity resource allocation Power control Multi-agent deep reinforcement learning
下载PDF
Deep Reinforcement Learning Based Joint Partial Computation Offloading and Resource Allocation in Mobility-Aware MEC System 被引量:3
10
作者 Luyao Wang Guanglin Zhang 《China Communications》 SCIE CSCD 2022年第8期85-99,共15页
Mobile edge computing(MEC)emerges as a paradigm to free mobile devices(MDs)from increasingly dense computing workloads in 6G networks.The quality of computing experience can be greatly improved by offloading computing... Mobile edge computing(MEC)emerges as a paradigm to free mobile devices(MDs)from increasingly dense computing workloads in 6G networks.The quality of computing experience can be greatly improved by offloading computing tasks from MDs to MEC servers.Renewable energy harvested by energy harvesting equipments(EHQs)is considered as a promising power supply for users to process and offload tasks.In this paper,we apply the uniform mobility model of MDs to derive a more realistic wireless channel model in a multi-user MEC system with batteries as EHQs to harvest and storage energy.We investigate an optimization problem of the weighted sum of delay cost and energy cost of MDs in the MEC system.We propose an effective joint partial computation offloading and resource allocation(CORA)algorithm which is based on deep reinforcement learning(DRL)to obtain the optimal scheduling without prior knowledge of task arrival,renewable energy arrival as well as channel condition.The simulation results verify the efficiency of the proposed algorithm,which undoubtedly minimizes the cost of MDs compared with other benchmarks. 展开更多
关键词 mobile edge computing energy harvesting device-mobility partial computation offloading resource allocation deep reinforcement learning
下载PDF
A new quantum key distribution resource allocation and routing optimization scheme
11
作者 毕琳 袁晓同 +1 位作者 吴炜杰 林升熙 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第3期244-259,共16页
Quantum key distribution(QKD)is a technology that can resist the threat of quantum computers to existing conventional cryptographic protocols.However,due to the stringent requirements of the quantum key generation env... Quantum key distribution(QKD)is a technology that can resist the threat of quantum computers to existing conventional cryptographic protocols.However,due to the stringent requirements of the quantum key generation environment,the generated quantum keys are considered valuable,and the slow key generation rate conflicts with the high-speed data transmission in traditional optical networks.In this paper,for the QKD network with a trusted relay,which is mainly based on point-to-point quantum keys and has complex changes in network resources,we aim to allocate resources reasonably for data packet distribution.Firstly,we formulate a linear programming constraint model for the key resource allocation(KRA)problem based on the time-slot scheduling.Secondly,we propose a new scheduling scheme based on the graded key security requirements(GKSR)and a new micro-log key storage algorithm for effective storage and management of key resources.Finally,we propose a key resource consumption(KRC)routing optimization algorithm to properly allocate time slots,routes,and key resources.Simulation results show that the proposed scheme significantly improves the key distribution success rate and key resource utilization rate,among others. 展开更多
关键词 quantum key distribution(QKD) resource allocation key storage routing algorithm
下载PDF
Distributed Resource Allocation in Dispersed Computing Environment Based on UAV Track Inspection in Urban Rail Transit
12
作者 Tong Gan Shuo Dong +1 位作者 Shiyou Wang Jiaxin Li 《Computers, Materials & Continua》 SCIE EI 2024年第7期643-660,共18页
With the rapid development of urban rail transit,the existing track detection has some problems such as low efficiency and insufficient detection coverage,so an intelligent and automatic track detectionmethod based on... With the rapid development of urban rail transit,the existing track detection has some problems such as low efficiency and insufficient detection coverage,so an intelligent and automatic track detectionmethod based onUAV is urgently needed to avoid major safety accidents.At the same time,the geographical distribution of IoT devices results in the inefficient use of the significant computing potential held by a large number of devices.As a result,the Dispersed Computing(DCOMP)architecture enables collaborative computing between devices in the Internet of Everything(IoE),promotes low-latency and efficient cross-wide applications,and meets users’growing needs for computing performance and service quality.This paper focuses on examining the resource allocation challenge within a dispersed computing environment that utilizes UAV inspection tracks.Furthermore,the system takes into account both resource constraints and computational constraints and transforms the optimization problem into an energy minimization problem with computational constraints.The Markov Decision Process(MDP)model is employed to capture the connection between the dispersed computing resource allocation strategy and the system environment.Subsequently,a method based on Double Deep Q-Network(DDQN)is introduced to derive the optimal policy.Simultaneously,an experience replay mechanism is implemented to tackle the issue of increasing dimensionality.The experimental simulations validate the efficacy of the method across various scenarios. 展开更多
关键词 UAV track inspection dispersed computing resource allocation deep reinforcement learning Markov decision process
下载PDF
Resource Allocation for IRS Assistedmm Wave Wireless Powered Sensor Networks with User Cooperation
13
作者 Yonghui Lin Zhengyu Zhu 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第1期663-677,共15页
In this paper,we investigate IRS-aided user cooperation(UC)scheme in millimeter wave(mmWave)wirelesspowered sensor networks(WPSN),where two single-antenna users are wireless powered in the wireless energy transfer(WET... In this paper,we investigate IRS-aided user cooperation(UC)scheme in millimeter wave(mmWave)wirelesspowered sensor networks(WPSN),where two single-antenna users are wireless powered in the wireless energy transfer(WET)phase first and then cooperatively transmit information to a hybrid access point(AP)in the wireless information transmission(WIT)phase,following which the IRS is deployed to enhance the system performance of theWET andWIT.We maximized the weighted sum-rate problem by jointly optimizing the transmit time slots,power allocations,and the phase shifts of the IRS.Due to the non-convexity of the original problem,a semidefinite programming relaxation-based approach is proposed to convert the formulated problem to a convex optimization framework,which can obtain the optimal global solution.Simulation results demonstrate that the weighted sum throughput of the proposed UC scheme outperforms the non-UC scheme whether equipped with IRS or not. 展开更多
关键词 Intelligent reflecting surface millimeter wave wireless powered sensor networks user cooperation resource allocation
下载PDF
Joint Allocation of Computing and Connectivity Resources in Survivable Inter-Datacenter Elastic Optical Networks
14
作者 Yang Tao Li Yang Chen Xue 《China Communications》 SCIE CSCD 2024年第8期172-181,共10页
Inter-datacenter elastic optical networks(EON)need to provide the service for the requests of cloud computing that require not only connectivity and computing resources but also network survivability.In this paper,to ... Inter-datacenter elastic optical networks(EON)need to provide the service for the requests of cloud computing that require not only connectivity and computing resources but also network survivability.In this paper,to realize joint allocation of computing and connectivity resources in survivable inter-datacenter EONs,a survivable routing,modulation level,spectrum,and computing resource allocation algorithm(SRMLSCRA)algorithm and three datacenter selection strategies,i.e.Computing Resource First(CRF),Shortest Path First(SPF)and Random Destination(RD),are proposed for different scenarios.Unicast and manycast are applied to the communication of computing requests,and the routing strategies are calculated respectively.Simulation results show that SRMLCRA-CRF can serve the largest amount of protected computing tasks,and the requested calculation blocking probability is reduced by 29.2%,28.3%and 30.5%compared with SRMLSCRA-SPF,SRMLSCRA-RD and the benchmark EPS-RMSA algorithms respectively.Therefore,it is more applicable to the networks with huge calculations.Besides,SRMLSCRA-SPF consumes the least spectrum,thereby exhibiting its suitability for scenarios where the amount of calculation is small and communication resources are scarce.The results demonstrate that the proposed methods realize the joint allocation of computing and connectivity resources,and could provide efficient protection for services under single-link failure and occupy less spectrum. 展开更多
关键词 computing and connectivity interdatacenter networks joint resource allocation service protection
下载PDF
Resource Allocation in Multi-User Cellular Networks:A Transformer-Based Deep Reinforcement Learning Approach
15
作者 Zhao Di Zheng Zhong +2 位作者 Qin Pengfei Qin Hao Song Bin 《China Communications》 SCIE CSCD 2024年第5期77-96,共20页
To meet the communication services with diverse requirements,dynamic resource allocation has shown increasing importance.In this paper,we consider the multi-slot and multi-user resource allocation(MSMU-RA)in a downlin... To meet the communication services with diverse requirements,dynamic resource allocation has shown increasing importance.In this paper,we consider the multi-slot and multi-user resource allocation(MSMU-RA)in a downlink cellular scenario with the aim of maximizing system spectral efficiency while guaranteeing user fairness.We first model the MSMURA problem as a dual-sequence decision-making process,and then solve it by a novel Transformerbased deep reinforcement learning(TDRL)approach.Specifically,the proposed TDRL approach can be achieved based on two aspects:1)To adapt to the dynamic wireless environment,the proximal policy optimization(PPO)algorithm is used to optimize the multi-slot RA strategy.2)To avoid co-channel interference,the Transformer-based PPO algorithm is presented to obtain the optimal multi-user RA scheme by exploring the mapping between user sequence and resource sequence.Experimental results show that:i)the proposed approach outperforms both the traditional and DRL methods in spectral efficiency and user fairness,ii)the proposed algorithm is superior to DRL approaches in terms of convergence speed and generalization performance. 展开更多
关键词 dynamic resource allocation multi-user cellular network spectrum efficiency user fairness
下载PDF
Online Learning-Based Offloading Decision and Resource Allocation in Mobile Edge Computing-Enabled Satellite-Terrestrial Networks
16
作者 Tong Minglei Li Song +1 位作者 Han Wanjiang Wang Xiaoxiang 《China Communications》 SCIE CSCD 2024年第3期230-246,共17页
Mobile edge computing(MEC)-enabled satellite-terrestrial networks(STNs)can provide Internet of Things(IoT)devices with global computing services.Sometimes,the network state information is uncertain or unknown.To deal ... Mobile edge computing(MEC)-enabled satellite-terrestrial networks(STNs)can provide Internet of Things(IoT)devices with global computing services.Sometimes,the network state information is uncertain or unknown.To deal with this situation,we investigate online learning-based offloading decision and resource allocation in MEC-enabled STNs in this paper.The problem of minimizing the average sum task completion delay of all IoT devices over all time periods is formulated.We decompose this optimization problem into a task offloading decision problem and a computing resource allocation problem.A joint optimization scheme of offloading decision and resource allocation is then proposed,which consists of a task offloading decision algorithm based on the devices cooperation aided upper confidence bound(UCB)algorithm and a computing resource allocation algorithm based on the Lagrange multiplier method.Simulation results validate that the proposed scheme performs better than other baseline schemes. 展开更多
关键词 computing resource allocation mobile edge computing satellite-terrestrial networks task offloading decision
下载PDF
An Adaptive Hybrid Optimization Strategy for Resource Allocation in Network Function Virtualization
17
作者 Chumei Wen Delu Zeng 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第2期1617-1636,共20页
With the rapid development of Network Function Virtualization(NFV),the problem of low resource utilizationin traditional data centers is gradually being addressed.However,existing research does not optimize both local... With the rapid development of Network Function Virtualization(NFV),the problem of low resource utilizationin traditional data centers is gradually being addressed.However,existing research does not optimize both localand global allocation of resources in data centers.Hence,we propose an adaptive hybrid optimization strategy thatcombines dynamic programming and neural networks to improve resource utilization and service quality in datacenters.Our approach encompasses a service function chain simulation generator,a parallel architecture servicesystem,a dynamic programming strategy formaximizing the utilization of local server resources,a neural networkfor predicting the global utilization rate of resources and a global resource optimization strategy for bottleneck andredundant resources.With the implementation of our local and global resource allocation strategies,the systemperformance is significantly optimized through simulation. 展开更多
关键词 NFV resource allocation decision-making optimization service function
下载PDF
Starlet:Network defense resource allocation with multi-armed bandits for cloud-edge crowd sensing in IoT
18
作者 Hui Xia Ning Huang +2 位作者 Xuecai Feng Rui Zhang Chao Liu 《Digital Communications and Networks》 SCIE CSCD 2024年第3期586-596,共11页
The cloud platform has limited defense resources to fully protect the edge servers used to process crowd sensing data in Internet of Things.To guarantee the network's overall security,we present a network defense ... The cloud platform has limited defense resources to fully protect the edge servers used to process crowd sensing data in Internet of Things.To guarantee the network's overall security,we present a network defense resource allocation with multi-armed bandits to maximize the network's overall benefit.Firstly,we propose the method for dynamic setting of node defense resource thresholds to obtain the defender(attacker)benefit function of edge servers(nodes)and distribution.Secondly,we design a defense resource sharing mechanism for neighboring nodes to obtain the defense capability of nodes.Subsequently,we use the decomposability and Lipschitz conti-nuity of the defender's total expected utility to reduce the difference between the utility's discrete and continuous arms and analyze the difference theoretically.Finally,experimental results show that the method maximizes the defender's total expected utility and reduces the difference between the discrete and continuous arms of the utility. 展开更多
关键词 Internet of things Defense resource sharing Multi-armed bandits Defense resource allocation
下载PDF
Computing Resource Allocation for Blockchain-Based Mobile Edge Computing
19
作者 Wanbo Zhang Yuqi Fan +2 位作者 Jun Zhang Xu Ding Jung Yoon Kim 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第7期863-885,共23页
Users and edge servers are not fullymutually trusted inmobile edge computing(MEC),and hence blockchain can be introduced to provide trustableMEC.In blockchain-basedMEC,each edge server functions as a node in bothMEC a... Users and edge servers are not fullymutually trusted inmobile edge computing(MEC),and hence blockchain can be introduced to provide trustableMEC.In blockchain-basedMEC,each edge server functions as a node in bothMEC and blockchain,processing users’tasks and then uploading the task related information to the blockchain.That is,each edge server runs both users’offloaded tasks and blockchain tasks simultaneously.Note that there is a trade-off between the resource allocation for MEC and blockchain tasks.Therefore,the allocation of the resources of edge servers to the blockchain and theMEC is crucial for the processing delay of blockchain-based MEC.Most of the existing research tackles the problem of resource allocation in either blockchain or MEC,which leads to unfavorable performance of the blockchain-based MEC system.In this paper,we study how to allocate the computing resources of edge servers to the MEC and blockchain tasks with the aimtominimize the total systemprocessing delay.For the problem,we propose a computing resource Allocation algorithmfor Blockchain-based MEC(ABM)which utilizes the Slater’s condition,Karush-Kuhn-Tucker(KKT)conditions,partial derivatives of the Lagrangian function and subgradient projection method to obtain the solution.Simulation results show that ABM converges and effectively reduces the processing delay of blockchain-based MEC. 展开更多
关键词 Mobile edge computing blockchain resource allocation
下载PDF
Enhanced PSO Based Energy-Efficient Resource Allocation and CQI Based MCS Selection in LTE-A Heterogeneous System 被引量:1
20
作者 Jianbo Du Liqiang Zhao +2 位作者 Jie Feng Jie Xin Yong Wang 《China Communications》 SCIE CSCD 2016年第11期197-204,共8页
In order to maximize system energy efficiency(EE) under user quality of service(Qo S) restraints in Long Term Evolution-Advanced(LTE-A) networks,a constrained joint resource optimization allocation scheme is presented... In order to maximize system energy efficiency(EE) under user quality of service(Qo S) restraints in Long Term Evolution-Advanced(LTE-A) networks,a constrained joint resource optimization allocation scheme is presented,which is NP-hard. Hence,we divide it into three sub-problems to reduce computation complexity,i.e.,the resource block(RB) allocation,the power distribution,and the modulation and coding scheme(MCS) assignment for user codewords. Then an enhanced heuristic approach GAPSO is proposed and is adopted in the RB and power allocation respectively to reduce computational complexity further on. Moreover,a novel MCS allocation scheme is put forward,which could make a good balance between the system reliability and availability under different channel conditions. Simulation results show that the proposed GAPSO could achieve better performance in convergence speed and global optimum searching,and that the joint resource allocation scheme could improve energy efficiency effectively under user Qo S requirements. 展开更多
关键词 LTE-A radio resource allocation MCSs assignment energy efficiency particle swarm optimization
下载PDF
上一页 1 2 26 下一页 到第
使用帮助 返回顶部