电力传感网可以用于对电力网络的设备工作状态和工作环境等信息实时采集和获取,对于电力网络设施的实时监控与快速响应具有重要作用。针对系统在数据排队时延和丢包率上的特殊要求,提出了一种基于强化学习的电力传感网资源分配方案。在...电力传感网可以用于对电力网络的设备工作状态和工作环境等信息实时采集和获取,对于电力网络设施的实时监控与快速响应具有重要作用。针对系统在数据排队时延和丢包率上的特殊要求,提出了一种基于强化学习的电力传感网资源分配方案。在资源受限的情况下,通过资源分配算法来优化传感器节点的排队时延和丢包率,并将该优化问题建模为马尔可夫决策过程(Markov decision process,MDP),通过双深度Q网络(double deep Q-learning,DDQN)来对优化目标函数求解。仿真结果与数值分析表明,所提方案在收敛性、排队时延和丢包率等方面的性能均优于基准方案。展开更多
文摘电力传感网可以用于对电力网络的设备工作状态和工作环境等信息实时采集和获取,对于电力网络设施的实时监控与快速响应具有重要作用。针对系统在数据排队时延和丢包率上的特殊要求,提出了一种基于强化学习的电力传感网资源分配方案。在资源受限的情况下,通过资源分配算法来优化传感器节点的排队时延和丢包率,并将该优化问题建模为马尔可夫决策过程(Markov decision process,MDP),通过双深度Q网络(double deep Q-learning,DDQN)来对优化目标函数求解。仿真结果与数值分析表明,所提方案在收敛性、排队时延和丢包率等方面的性能均优于基准方案。