Owing to the recent trends in remote health monitoring,real-time appli-cations for measuring Heartbeat Rate and Respiration Rate(HARR)from video signals are growing rapidly.Photo Plethysmo Graphy(PPG)is a method that ...Owing to the recent trends in remote health monitoring,real-time appli-cations for measuring Heartbeat Rate and Respiration Rate(HARR)from video signals are growing rapidly.Photo Plethysmo Graphy(PPG)is a method that is operated by estimating the infinitesimal change in color of the human face,rigid motion of facial skin and head parts,etc.Ballisto Cardiography(BCG)is a non-surgical tool for obtaining a graphical depiction of the human body’s heartbeat by inducing repetitive movements found in the heart pulses.The resilience against motion artifacts induced by luminancefluctuation and the patient’s mobility var-iation is the major difficulty faced while processing the real-time video signals.In this research,a video-based HARR measuring framework is proposed based on combined PPG and BCG.Here,the noise from the input video signals is removed by using an Adaptive Kalmanfilter(AKF).Three different algorithms are used for estimating the HARR from the noise-free input signals.Initially,the noise-free sig-nals are subjected to Modified Adaptive Fourier Decomposition(MAFD)and then to Enhanced Hilbert vibration Decomposition(EHVD)andfinally to Improved Var-iation mode Decomposition(IVMD)for attaining three various results of HARR.The obtained values are compared with each other and found that the EHVD is showing better results when compared with all the other methods.展开更多
The effects of acute progressive hypoxia on the respiration rate of the Chinese freshwater crab, Eriocheir sinensis, acclimated at three temperatures were investigated with a closed respiromet er. E. sinensis can main...The effects of acute progressive hypoxia on the respiration rate of the Chinese freshwater crab, Eriocheir sinensis, acclimated at three temperatures were investigated with a closed respiromet er. E. sinensis can maintain its respiration rate down to the critical point (Pc) and from this point its respiration rate declines rapidly, reaching zero at a lower ambient oxygen concentration called the zero respiration oxygen concentration. Because of this, a new hyperbolic equation is introduced to express the relationship between respiration rate and ambient oxygen concentration. A new method for calculating the PC value is also developed. The PC values for E. sinensis at 20-35℃ range from 1.92-3.47 mg/1.展开更多
It has been shown that remote monitoring of pulmonary activity can be achieved using ultra-wideband (UWB) systems, which shows promise in home healthcare,rescue,and security applications.In this paper,we first present...It has been shown that remote monitoring of pulmonary activity can be achieved using ultra-wideband (UWB) systems, which shows promise in home healthcare,rescue,and security applications.In this paper,we first present a multi-ray propagation model for UWB signal,which is traveling through the human thorax and is reflected on the air/dry-skin/fat/muscle interfaces,A geometry-based statistical channel model is then developed for simulating the reception of UWB signals in the indoor propagation environment.This model enables replication of time-varying multipath profiles due to the displacement of a human chest.Subsequently, a UWB distributed cognitive radar system (UWB-DCRS) is developed for the robust detection of chest cavity motion and the accurate estimation of respiration rate.The analytical framework can serve as a basis in the planning and evaluation of future rheasurement programs.We also provide a case study on how the antenna beamwidth affects the estimation of respiration rate based on the proposed propagation models and system architecture.展开更多
The large water-pumping and particle-capturing gills of the filter-feeding blue mussel Mytilus edulis are oversized for respiratory purposes. Consequently, the oxygen uptake rate of the mussel has been suggested to be...The large water-pumping and particle-capturing gills of the filter-feeding blue mussel Mytilus edulis are oversized for respiratory purposes. Consequently, the oxygen uptake rate of the mussel has been suggested to be rather insensitive to decreasing oxygen concentrations in the ambient water, since the diffusion rate of oxygen from water flowing through the mussel determines oxygen uptake. We tested this hypothesis by measuring the oxygen uptake in mussels exposed to various oxygen concentrations. These concentrations were established via N2-bubbling of the water in a respiration chamber with mussels fed algal cells to stimulate fully opening of the valves. It was found that mussels exposecl to oxygen concentrations decreasing from 9 to 2 mg O2/L resulted in a slow but significant reduction in the respiration rate, while the filtration rate remained high and constant. Thus, a decrease of oxygen concentration by 78% only resulted in a 25% decrease in respiration rate. However, at oxygen concentrations below 2 mg O2/L M. edulis responded by gradually closing its valves, resulting in a rapid decrease of filtration rate, concurrent with a rapid reduction of respiration rate. These observations indicated that M. edulis is no longer able to maintain its normal aerobic metabolism at oxygen concentration below 2 mg O2/L, and there seems to be an energy-saving mechanism in bivalve molluscs to strongly reduce their activity when exposed to low oxygen conditions.展开更多
-Bacteria abundance, chlorophyll a, ATP and POC concentrations and respiration rates of microorganisms in the Changjiang Estuary and the plume were determined in July 1986. The high values of bacteria abundance occurr...-Bacteria abundance, chlorophyll a, ATP and POC concentrations and respiration rates of microorganisms in the Changjiang Estuary and the plume were determined in July 1986. The high values of bacteria abundance occurred in the river mouth in association with suspended matter. It is assumed that bacteria were the major contributor to ATP and the main consumer of dissolved oxygen, and that the relationship between ATP and POC was present in that area. In the dilution zone (salinity; 25-30), instead of bacteria, phytoplankton was the major contributor to ATP and respiration rates, due to diatom bloom. Close relationships between Chi a and ATP, and ATP and POC were observed. Contribution of microbial carbon to POC was also estimated.展开更多
A model for modified-atmosphere packaging (MAP) systems containing fruits and vegetables was developed.The computer simulation was performed to predict the gas mass concentrations inside the packages and was success...A model for modified-atmosphere packaging (MAP) systems containing fruits and vegetables was developed.The computer simulation was performed to predict the gas mass concentrations inside the packages and was successfully verified by experiments with yellow peaches at 5,15 and 25 ℃ using two types of packaging films.A Michaelis-Menten type respiration model with noncompetitive inhibition mechanism due to CO2 was adopted while the respiration rates were measured with an improved permeable system method suitable for either steady or unsteady state.The applicability of the model in the design of MAP systems was demonstrated with a calculation to evaluate film specification and equilibrium concentrations of O2 and CO2 in the package containing yellow peaches.展开更多
The present study was conducted to investigate the effects of methyl jasmonate(Me JA)dipping treatment on mitochondrial energy metabolism and quality parameters of Nanguo pears during room temperature storage.The resu...The present study was conducted to investigate the effects of methyl jasmonate(Me JA)dipping treatment on mitochondrial energy metabolism and quality parameters of Nanguo pears during room temperature storage.The results showed that Me JA treatment suppressed the respiration rate and weight loss,and maintained the flesh firmness of Nanguo pears.Me JA also effectively maintained the content of ascorbic acid and titratable acidity in the fruit.Furthermore,the activities of H^(+)-ATPase,Ca^(2+)-ATPase,succinate dehydrogenase(SDH)and cytochrome C oxidase(CCO)of the Me JA-treated fruit were significantly higher than those of the untreated fruit.The contents of adenosine triphosphate(ATP)and adenosine diphosphate(ADP)and the energy charge were also enhanced by Me JA treatment.These results suggest that postharvest Me JA treatment could maintain the quality of Nanguo pears,in part by modulating mitochondrial energy metabolism during room temperature storage.展开更多
Heavy metal pollution in aquatic system is becoming a serious problem worldwide. In this study, responses of Sargassum thunbergii to dif ferent concentrations(0, 0.1, 0.5, 1.0 and 5.0 mg/L) of zinc(Zn) and cadmium(Cd)...Heavy metal pollution in aquatic system is becoming a serious problem worldwide. In this study, responses of Sargassum thunbergii to dif ferent concentrations(0, 0.1, 0.5, 1.0 and 5.0 mg/L) of zinc(Zn) and cadmium(Cd) exposure separately were studied for 15 days in laboratory-controlled conditions. The results show that the specifi c growth rates increased slightly under the lower Zn concentration treatment(0.1 mg/L) at the first 5 d and then decreased gradually, which were significantly reduced with the exposure time in higher Zn concentrations and all Cd treatments compared to respective control, especially for 1.0 and 5.0 mg/L Cd. Chlorophyll a contents showed significant increase in 0.1 mg/L Zn treatment, whereas the gradually reduction were observed in the other three Zn treatments and all Cd treatments. The oxygen evolution rate and respiration rate presented distinct behavior in the Zn-treated samples, but both declined steadily with the exposure time in Cd treatments. The P/R value analyses showed similar variation patterns as chlorophyll a contents. Real-time PCR showed that lower Zn concentration(0.1 mg/L) increased mRNA expression of rbcL gene, whereas higher Zn concentrations and Cd reduced the rbcL expression. Taken together, these findings strongly indicate that Zn and Cd had different effects on S. thunbergii both at the physiological and gene transcription levels, the transcript level of photosynthesis-related gene rbcL can be used as an useful molecular marker of algal growth and environment impacts.展开更多
The effects of simulated acid rain with pH values of 6.63 (control, 4.5, 3.0, and 2.0 on saplings of Pinus massoniana and Cunninghamia lanceolate, were studied. The results showed that the pH of C.lanceolate, leaf sap...The effects of simulated acid rain with pH values of 6.63 (control, 4.5, 3.0, and 2.0 on saplings of Pinus massoniana and Cunninghamia lanceolate, were studied. The results showed that the pH of C.lanceolate, leaf sap and soil decreased as the acidity of rainfall increased. The acid rain with very low pH had significant effects on the photosynthetic rates per plant, but not on that of the per unit weight of dry leaves. The respiration rates of the two species were stimulated. Root and leaf boimass, but not stem biomass, were also reduced tremendously during a seven months period.展开更多
With global climate change, soil drying-rewetting(DRW) events have intensified and occurred frequently on the Loess Plateau of China. However, the extent to which the DRW cycles with different wetting intensities and ...With global climate change, soil drying-rewetting(DRW) events have intensified and occurred frequently on the Loess Plateau of China. However, the extent to which the DRW cycles with different wetting intensities and cycle numbers alter microbial community and respiration is barely understood. Here,indoor DRW one and four cycles treatments were implemented on soil samples obtained from the Loess Plateau, involving increase of soil moisture from10% water-holding capacity(WHC) to 60% and 90% WHC(i.e., 10%–60% and 10%–90% WHC, respectively). Constant soil moistures of 10%, 60%,and 90% WHC were used as the controls. The results showed that bacterial diversity and richness decreased and those of fungi remained unchanged under DRW treatments compared to the controls. Under all moisture levels, Actinobacteriota and Ascomycota were the most dominant bacterial and fungal phyla,respectively. The bacterial network was more complex than that of fungi, indicating that bacteria had a greater potential for interaction and niche sharing under DRW treatments. The pulse of respiration rate declined as the DRW cycle increased under 10%–60% WHC, but remained similar for different cycles under 10%–90% WHC. Moreover, the DRW treatments reduced the overall carbon loss, and the direct carbon release under 10%–60% WHC was larger than that under 10%–90% WHC. The cumulative CO_(2) emissions after four DRW cycles were significantly positively correlated with microbial biomass carbon and negatively correlated with fungal richness(Chao 1).展开更多
A 180-day incubation experiment was con- ducted to investigate the effect of different organic materials on the chemical properties of coastal soil with high salinity and relatively low pH. Four organic materials (th...A 180-day incubation experiment was con- ducted to investigate the effect of different organic materials on the chemical properties of coastal soil with high salinity and relatively low pH. Four organic materials (three kinds of plant residues: straw, composted straw, and fresh reed; and one kind of poultry manure: chicken manure) were applied at a ratio of 15 g·kg^-1 to samples of costal saline soil from the Yellow River Delta of China. The results showed that the soil pH and exchangeable sodium percentage (ESP) decreased, whereas soil cation exchangeable capacity (CEC) and macronutrient concen- trations increased, regardless of the type of organic material used. All treatments showed a remarkable increase in soil soluble organic carbon (SOC) during the 180-day incubation. The peak values of SOC in descend- ing order were chicken manure, reed, composted straw, straw, and control soil. At the end of incubation, the highest level of SOC occurred in the straw-amended soil, followed by composted straw, reed, and chicken manure- amended soils. Soil respiration rate and available nitrogen were significantly influenced by the type of material used. Although reed-amended soil had a relatively high SOC and respiration rate, the ESP was reduced the least. Consider- ing the possible risk of heavy metals caused by chicken manure, it is proposed that straw and composted straw are the more efficient materials to use for reclaiming costal saline soil and improving the availability of macronu- trients.展开更多
Artemisia sacrorum communities with different growth years were selected to analyse soil nutrient characteristics,the variation in soil microbial properties,and their relationships in the loess hilly region.The result...Artemisia sacrorum communities with different growth years were selected to analyse soil nutrient characteristics,the variation in soil microbial properties,and their relationships in the loess hilly region.The results showed that with an increase in the number of growth years,soil microbial biomass carbon and nitrogen contents as well as soil phosphatase and urease activities initially decreased and then increased in the A.sacrorum communities.The soil organic carbon,organic nitrogen,and total nitrogen contents as well as soil respiration rate showed an increasing trend and reached a maximum at age(a)37.The soil available phosphorus content first decreased and then increased,with the lowest level observed at 18 a.By contrast,soil available potassium initially increased and then decreased.Soil microbial biomass carbon had a significant positive correlation with soil organic carbon,total nitrogen and organic nitrogen,while soil respiration had a significant positive correlation with organic nitrogen,soil phosphatase and organic carbon.Soil respiration had a highly significant positive correlation with organic carbon and total nitrogen,while soil phosphatase had a highly significant positive correlation with total nitrogen and organic nitrogen.In the A.sacrorum communities,the soil organic carbon and total nitrogen contents were mainly affected by soil respiration,soil available potassium content was mainly affected by soil urease activity,and soil organic nitrogen content was mainly affected by soil phosphatase activity.These findings indicate that soil basal respiration,urease activity and phosphatase activity were the major microbial factors affecting the characteristics of the soil nutrients in the A.sacrorum communities.In conclusion,the natural restoration process of A.sacrorum communities can enhance soil microbial activity and improve soil quality.展开更多
Long-term preservation of recalcitrant seeds is very difficult because the physiological basis on their desiccation sensitivity is poorly understood. Survival of Antiaris toxicaria axes rapidly decreased and that of i...Long-term preservation of recalcitrant seeds is very difficult because the physiological basis on their desiccation sensitivity is poorly understood. Survival of Antiaris toxicaria axes rapidly decreased and that of immature maize embryos very slowly decreased with dehydration. To understand their different responses to dehydration, we examined the changes in mitochondria activity during dehydration. Although activities of cytochrome (Cyt) c oxidase and malate dehydrogenase of the A. toxicaria axis and maize embryo mitochondria decreased with dehydration, the parameters of maize embryo mitochondria were much higher than those of A. toxicaria, showing that the damage was more severe for the A. toxicaria axis mitochondria than for those of maize embryo. The state I and III respiration of the A. toxicaria axis mitochondria were higher than those of maize embryo, the former rapidly decreased, and the latter slowly decreased with dehydration. The proportion of Cyt c pathway to state III respiration for the A. toxicaria axis mitochondria was low and rapidly decreased with dehydration, and the proportion of alternative oxidase pathway was high and slightly increased with dehydration. In contrast, the proportion of Cyt c pathway for maize embryo mitochondria was high, and that of alternative oxidase pathway was low. Both pathways decreased slowly with dehydration.展开更多
Salecan is a novel exopolysaccharide produced by the strain Agrobacterium sp. 7__X09, and it is composed of only glucose monomers. The unique chemical composition and excellent physicochemical properties make Salecan ...Salecan is a novel exopolysaccharide produced by the strain Agrobacterium sp. 7__X09, and it is composed of only glucose monomers. The unique chemical composition and excellent physicochemical properties make Salecan a promising material for applications in coagulation, lubrication, protection against acute liver injury, and alleviating constipation. In this study, we cloned the Vitreosci/la hemoglobin gene into a broad-host-range plasmid pCM158. Without antibiotic selection, there was negligible loss of the plasmid in the host Agrobacterium sp. ZX09 after one passage of cultivation. The expression of Vitreoscilla hemoglobin was demonstrated by carbon monoxide (CO) dif- ference spectrum. The engineered strain Agrobacterium sp. ZX09 increased Salecan yield by 30%. The other physi- ological changes included its elevated respiration rate and cellular invertase activity.展开更多
Energy expenditure is a key variable in the study of ageing, and the fruit fly Drosophila melanogaster is a model organism that has been used to make step changes in our understanding of the ageing process. Standard m...Energy expenditure is a key variable in the study of ageing, and the fruit fly Drosophila melanogaster is a model organism that has been used to make step changes in our understanding of the ageing process. Standard methods for measurement of energy expenditure involve placing individuals in metabolic chambers where their oxygen consumption and CO2 production can be quantified. These measurements require separating individuals from any social context, and may only poorly reflect the environment in which the animals normally live. The doubly-labeled water (DLW) method is an isotope-based technique for measuring energy expenditure which overcomes these problems. However, technical challenges mean that the smallest animals this method has been previously applied to weighed 50-200 mg. We overcame these technical challenges to measure energy demands in Drosophila weighing 0.78 mg. Mass-specific energy expenditure varied between 43 and 65 mW·g^-1. These estimates are considerably higher than estimates using indirect calorimetry of Drosophila in small metabolic chambers (around 18 mW·g^-1). The methodology we have established extends downwards by three orders of magnitude the size of animals that can be measured using DLW. This approach may be of considerable value in future ageing research attempting to understand the genetic and genomic basis of ageing.展开更多
文摘Owing to the recent trends in remote health monitoring,real-time appli-cations for measuring Heartbeat Rate and Respiration Rate(HARR)from video signals are growing rapidly.Photo Plethysmo Graphy(PPG)is a method that is operated by estimating the infinitesimal change in color of the human face,rigid motion of facial skin and head parts,etc.Ballisto Cardiography(BCG)is a non-surgical tool for obtaining a graphical depiction of the human body’s heartbeat by inducing repetitive movements found in the heart pulses.The resilience against motion artifacts induced by luminancefluctuation and the patient’s mobility var-iation is the major difficulty faced while processing the real-time video signals.In this research,a video-based HARR measuring framework is proposed based on combined PPG and BCG.Here,the noise from the input video signals is removed by using an Adaptive Kalmanfilter(AKF).Three different algorithms are used for estimating the HARR from the noise-free input signals.Initially,the noise-free sig-nals are subjected to Modified Adaptive Fourier Decomposition(MAFD)and then to Enhanced Hilbert vibration Decomposition(EHVD)andfinally to Improved Var-iation mode Decomposition(IVMD)for attaining three various results of HARR.The obtained values are compared with each other and found that the EHVD is showing better results when compared with all the other methods.
文摘The effects of acute progressive hypoxia on the respiration rate of the Chinese freshwater crab, Eriocheir sinensis, acclimated at three temperatures were investigated with a closed respiromet er. E. sinensis can maintain its respiration rate down to the critical point (Pc) and from this point its respiration rate declines rapidly, reaching zero at a lower ambient oxygen concentration called the zero respiration oxygen concentration. Because of this, a new hyperbolic equation is introduced to express the relationship between respiration rate and ambient oxygen concentration. A new method for calculating the PC value is also developed. The PC values for E. sinensis at 20-35℃ range from 1.92-3.47 mg/1.
文摘It has been shown that remote monitoring of pulmonary activity can be achieved using ultra-wideband (UWB) systems, which shows promise in home healthcare,rescue,and security applications.In this paper,we first present a multi-ray propagation model for UWB signal,which is traveling through the human thorax and is reflected on the air/dry-skin/fat/muscle interfaces,A geometry-based statistical channel model is then developed for simulating the reception of UWB signals in the indoor propagation environment.This model enables replication of time-varying multipath profiles due to the displacement of a human chest.Subsequently, a UWB distributed cognitive radar system (UWB-DCRS) is developed for the robust detection of chest cavity motion and the accurate estimation of respiration rate.The analytical framework can serve as a basis in the planning and evaluation of future rheasurement programs.We also provide a case study on how the antenna beamwidth affects the estimation of respiration rate based on the proposed propagation models and system architecture.
基金Supported by the Special Scientific Research Funds for Central Non-profit Institutes,Chinese Academy of Fishery Sciences(No.2016HY-ZD0102)
文摘The large water-pumping and particle-capturing gills of the filter-feeding blue mussel Mytilus edulis are oversized for respiratory purposes. Consequently, the oxygen uptake rate of the mussel has been suggested to be rather insensitive to decreasing oxygen concentrations in the ambient water, since the diffusion rate of oxygen from water flowing through the mussel determines oxygen uptake. We tested this hypothesis by measuring the oxygen uptake in mussels exposed to various oxygen concentrations. These concentrations were established via N2-bubbling of the water in a respiration chamber with mussels fed algal cells to stimulate fully opening of the valves. It was found that mussels exposecl to oxygen concentrations decreasing from 9 to 2 mg O2/L resulted in a slow but significant reduction in the respiration rate, while the filtration rate remained high and constant. Thus, a decrease of oxygen concentration by 78% only resulted in a 25% decrease in respiration rate. However, at oxygen concentrations below 2 mg O2/L M. edulis responded by gradually closing its valves, resulting in a rapid decrease of filtration rate, concurrent with a rapid reduction of respiration rate. These observations indicated that M. edulis is no longer able to maintain its normal aerobic metabolism at oxygen concentration below 2 mg O2/L, and there seems to be an energy-saving mechanism in bivalve molluscs to strongly reduce their activity when exposed to low oxygen conditions.
文摘-Bacteria abundance, chlorophyll a, ATP and POC concentrations and respiration rates of microorganisms in the Changjiang Estuary and the plume were determined in July 1986. The high values of bacteria abundance occurred in the river mouth in association with suspended matter. It is assumed that bacteria were the major contributor to ATP and the main consumer of dissolved oxygen, and that the relationship between ATP and POC was present in that area. In the dilution zone (salinity; 25-30), instead of bacteria, phytoplankton was the major contributor to ATP and respiration rates, due to diatom bloom. Close relationships between Chi a and ATP, and ATP and POC were observed. Contribution of microbial carbon to POC was also estimated.
基金The Start-up Research Fund for Teachers withDoctor s Degree by Shanghai University of Science and Technology (No.X530)the Key Subject Foundation of Shanghai Education Committee(PeriodⅣ).
文摘A model for modified-atmosphere packaging (MAP) systems containing fruits and vegetables was developed.The computer simulation was performed to predict the gas mass concentrations inside the packages and was successfully verified by experiments with yellow peaches at 5,15 and 25 ℃ using two types of packaging films.A Michaelis-Menten type respiration model with noncompetitive inhibition mechanism due to CO2 was adopted while the respiration rates were measured with an improved permeable system method suitable for either steady or unsteady state.The applicability of the model in the design of MAP systems was demonstrated with a calculation to evaluate film specification and equilibrium concentrations of O2 and CO2 in the package containing yellow peaches.
基金supported by the National Natural Science Foundation of China(31801595)the Firstclass Discipline Project of Liaoning Province,China(LNSPXKBD2020205)。
文摘The present study was conducted to investigate the effects of methyl jasmonate(Me JA)dipping treatment on mitochondrial energy metabolism and quality parameters of Nanguo pears during room temperature storage.The results showed that Me JA treatment suppressed the respiration rate and weight loss,and maintained the flesh firmness of Nanguo pears.Me JA also effectively maintained the content of ascorbic acid and titratable acidity in the fruit.Furthermore,the activities of H^(+)-ATPase,Ca^(2+)-ATPase,succinate dehydrogenase(SDH)and cytochrome C oxidase(CCO)of the Me JA-treated fruit were significantly higher than those of the untreated fruit.The contents of adenosine triphosphate(ATP)and adenosine diphosphate(ADP)and the energy charge were also enhanced by Me JA treatment.These results suggest that postharvest Me JA treatment could maintain the quality of Nanguo pears,in part by modulating mitochondrial energy metabolism during room temperature storage.
基金Supported by the National Natural Science Foundation of China(No.41306122)the National Special Research Fund for Non-Profit Marine Sector(Nos.201405040,201505022)+1 种基金the Scientific Funds for Outstanding Young Scientists of Shandong Province Award(No.BS2012HZ013)the Shandong Agricultural Application Technology Innovation of Research Project
文摘Heavy metal pollution in aquatic system is becoming a serious problem worldwide. In this study, responses of Sargassum thunbergii to dif ferent concentrations(0, 0.1, 0.5, 1.0 and 5.0 mg/L) of zinc(Zn) and cadmium(Cd) exposure separately were studied for 15 days in laboratory-controlled conditions. The results show that the specifi c growth rates increased slightly under the lower Zn concentration treatment(0.1 mg/L) at the first 5 d and then decreased gradually, which were significantly reduced with the exposure time in higher Zn concentrations and all Cd treatments compared to respective control, especially for 1.0 and 5.0 mg/L Cd. Chlorophyll a contents showed significant increase in 0.1 mg/L Zn treatment, whereas the gradually reduction were observed in the other three Zn treatments and all Cd treatments. The oxygen evolution rate and respiration rate presented distinct behavior in the Zn-treated samples, but both declined steadily with the exposure time in Cd treatments. The P/R value analyses showed similar variation patterns as chlorophyll a contents. Real-time PCR showed that lower Zn concentration(0.1 mg/L) increased mRNA expression of rbcL gene, whereas higher Zn concentrations and Cd reduced the rbcL expression. Taken together, these findings strongly indicate that Zn and Cd had different effects on S. thunbergii both at the physiological and gene transcription levels, the transcript level of photosynthesis-related gene rbcL can be used as an useful molecular marker of algal growth and environment impacts.
文摘The effects of simulated acid rain with pH values of 6.63 (control, 4.5, 3.0, and 2.0 on saplings of Pinus massoniana and Cunninghamia lanceolate, were studied. The results showed that the pH of C.lanceolate, leaf sap and soil decreased as the acidity of rainfall increased. The acid rain with very low pH had significant effects on the photosynthetic rates per plant, but not on that of the per unit weight of dry leaves. The respiration rates of the two species were stimulated. Root and leaf boimass, but not stem biomass, were also reduced tremendously during a seven months period.
基金supported by the Provincial Natural Science Foundation of Hunan, China (No. 2020JJ4429)the Open Fund of the State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau of China (No. A314021402-202101)the Hundred-Talent Project of Chinese Academy of Sciences (No. A315021407).
文摘With global climate change, soil drying-rewetting(DRW) events have intensified and occurred frequently on the Loess Plateau of China. However, the extent to which the DRW cycles with different wetting intensities and cycle numbers alter microbial community and respiration is barely understood. Here,indoor DRW one and four cycles treatments were implemented on soil samples obtained from the Loess Plateau, involving increase of soil moisture from10% water-holding capacity(WHC) to 60% and 90% WHC(i.e., 10%–60% and 10%–90% WHC, respectively). Constant soil moistures of 10%, 60%,and 90% WHC were used as the controls. The results showed that bacterial diversity and richness decreased and those of fungi remained unchanged under DRW treatments compared to the controls. Under all moisture levels, Actinobacteriota and Ascomycota were the most dominant bacterial and fungal phyla,respectively. The bacterial network was more complex than that of fungi, indicating that bacteria had a greater potential for interaction and niche sharing under DRW treatments. The pulse of respiration rate declined as the DRW cycle increased under 10%–60% WHC, but remained similar for different cycles under 10%–90% WHC. Moreover, the DRW treatments reduced the overall carbon loss, and the direct carbon release under 10%–60% WHC was larger than that under 10%–90% WHC. The cumulative CO_(2) emissions after four DRW cycles were significantly positively correlated with microbial biomass carbon and negatively correlated with fungal richness(Chao 1).
文摘A 180-day incubation experiment was con- ducted to investigate the effect of different organic materials on the chemical properties of coastal soil with high salinity and relatively low pH. Four organic materials (three kinds of plant residues: straw, composted straw, and fresh reed; and one kind of poultry manure: chicken manure) were applied at a ratio of 15 g·kg^-1 to samples of costal saline soil from the Yellow River Delta of China. The results showed that the soil pH and exchangeable sodium percentage (ESP) decreased, whereas soil cation exchangeable capacity (CEC) and macronutrient concen- trations increased, regardless of the type of organic material used. All treatments showed a remarkable increase in soil soluble organic carbon (SOC) during the 180-day incubation. The peak values of SOC in descend- ing order were chicken manure, reed, composted straw, straw, and control soil. At the end of incubation, the highest level of SOC occurred in the straw-amended soil, followed by composted straw, reed, and chicken manure- amended soils. Soil respiration rate and available nitrogen were significantly influenced by the type of material used. Although reed-amended soil had a relatively high SOC and respiration rate, the ESP was reduced the least. Consider- ing the possible risk of heavy metals caused by chicken manure, it is proposed that straw and composted straw are the more efficient materials to use for reclaiming costal saline soil and improving the availability of macronu- trients.
基金Financial support was provided by the Talent Training Program of the West of the Chinese Academy of Sciences(2008DF02)National Chinese Medicine Resources Survey Project[Finance and Social Work(2017)66].
文摘Artemisia sacrorum communities with different growth years were selected to analyse soil nutrient characteristics,the variation in soil microbial properties,and their relationships in the loess hilly region.The results showed that with an increase in the number of growth years,soil microbial biomass carbon and nitrogen contents as well as soil phosphatase and urease activities initially decreased and then increased in the A.sacrorum communities.The soil organic carbon,organic nitrogen,and total nitrogen contents as well as soil respiration rate showed an increasing trend and reached a maximum at age(a)37.The soil available phosphorus content first decreased and then increased,with the lowest level observed at 18 a.By contrast,soil available potassium initially increased and then decreased.Soil microbial biomass carbon had a significant positive correlation with soil organic carbon,total nitrogen and organic nitrogen,while soil respiration had a significant positive correlation with organic nitrogen,soil phosphatase and organic carbon.Soil respiration had a highly significant positive correlation with organic carbon and total nitrogen,while soil phosphatase had a highly significant positive correlation with total nitrogen and organic nitrogen.In the A.sacrorum communities,the soil organic carbon and total nitrogen contents were mainly affected by soil respiration,soil available potassium content was mainly affected by soil urease activity,and soil organic nitrogen content was mainly affected by soil phosphatase activity.These findings indicate that soil basal respiration,urease activity and phosphatase activity were the major microbial factors affecting the characteristics of the soil nutrients in the A.sacrorum communities.In conclusion,the natural restoration process of A.sacrorum communities can enhance soil microbial activity and improve soil quality.
基金Supported by the National Natural Science Foundation of China (30870223)
文摘Long-term preservation of recalcitrant seeds is very difficult because the physiological basis on their desiccation sensitivity is poorly understood. Survival of Antiaris toxicaria axes rapidly decreased and that of immature maize embryos very slowly decreased with dehydration. To understand their different responses to dehydration, we examined the changes in mitochondria activity during dehydration. Although activities of cytochrome (Cyt) c oxidase and malate dehydrogenase of the A. toxicaria axis and maize embryo mitochondria decreased with dehydration, the parameters of maize embryo mitochondria were much higher than those of A. toxicaria, showing that the damage was more severe for the A. toxicaria axis mitochondria than for those of maize embryo. The state I and III respiration of the A. toxicaria axis mitochondria were higher than those of maize embryo, the former rapidly decreased, and the latter slowly decreased with dehydration. The proportion of Cyt c pathway to state III respiration for the A. toxicaria axis mitochondria was low and rapidly decreased with dehydration, and the proportion of alternative oxidase pathway was high and slightly increased with dehydration. In contrast, the proportion of Cyt c pathway for maize embryo mitochondria was high, and that of alternative oxidase pathway was low. Both pathways decreased slowly with dehydration.
基金supported by the Fundamental Research Funds for the Central Universities of China(No.30920130121013)the National Natural Science Foundation of China(No.31300111)
文摘Salecan is a novel exopolysaccharide produced by the strain Agrobacterium sp. 7__X09, and it is composed of only glucose monomers. The unique chemical composition and excellent physicochemical properties make Salecan a promising material for applications in coagulation, lubrication, protection against acute liver injury, and alleviating constipation. In this study, we cloned the Vitreosci/la hemoglobin gene into a broad-host-range plasmid pCM158. Without antibiotic selection, there was negligible loss of the plasmid in the host Agrobacterium sp. ZX09 after one passage of cultivation. The expression of Vitreoscilla hemoglobin was demonstrated by carbon monoxide (CO) dif- ference spectrum. The engineered strain Agrobacterium sp. ZX09 increased Salecan yield by 30%. The other physi- ological changes included its elevated respiration rate and cellular invertase activity.
基金supported by the Strategic Priority Research Program of the Chinese Academy of Sciences(No.XDB 13030000) a 1000 talents professorship
文摘Energy expenditure is a key variable in the study of ageing, and the fruit fly Drosophila melanogaster is a model organism that has been used to make step changes in our understanding of the ageing process. Standard methods for measurement of energy expenditure involve placing individuals in metabolic chambers where their oxygen consumption and CO2 production can be quantified. These measurements require separating individuals from any social context, and may only poorly reflect the environment in which the animals normally live. The doubly-labeled water (DLW) method is an isotope-based technique for measuring energy expenditure which overcomes these problems. However, technical challenges mean that the smallest animals this method has been previously applied to weighed 50-200 mg. We overcame these technical challenges to measure energy demands in Drosophila weighing 0.78 mg. Mass-specific energy expenditure varied between 43 and 65 mW·g^-1. These estimates are considerably higher than estimates using indirect calorimetry of Drosophila in small metabolic chambers (around 18 mW·g^-1). The methodology we have established extends downwards by three orders of magnitude the size of animals that can be measured using DLW. This approach may be of considerable value in future ageing research attempting to understand the genetic and genomic basis of ageing.