A coupled numerical calculation method combining smooth particle hydrodynamics(SPH)and the finite element method(FEM)was implemented to investigate the seismic response of horizontal storage tanks.Anumericalmodel of a...A coupled numerical calculation method combining smooth particle hydrodynamics(SPH)and the finite element method(FEM)was implemented to investigate the seismic response of horizontal storage tanks.Anumericalmodel of a horizontal storage tank featuring a free liquid surface under seismic action was constructed using the SPH–FEM coupling method.The stored liquid was discretized using SPH particles,while the tank and supports were discretized using the FEM.The interaction between the stored liquid and the tank was simulated by using the meshless particle contact method.Then,the numerical simulation results were compared and analyzed against seismic simulation shaking table test data to validate the method.Subsequently,a series of numerical models,considering different liquid storage volumes and seismic effects,were constructed to obtain time history data of base shear and top center displacement,which revealed the seismic performance of horizontal storage tanks.Numerical simulation results and experimental data showed good agreement,with an error rate of less than 18.85%.And this conformity signifies the rationality of the SPH-FEM coupling method.The base shear and top center displacement values obtained by the coupled SPH-FEM method were only 53.3% to 69.1% of those calculated by the equivalent mass method employed in the current code.As the stored liquid volume increased,the seismic response of the horizontal storage tank exhibited a gradual upward trend,with the seismic response increasing from 73% to 388% for every 35% increase in stored liquid volume.The maximum von Mises stress of the tank and the supports remained below the steel yield strength during the earthquake.The coupled SPH-FEM method holds certain advantages in studying the seismic problems of tanks with complex structural forms,particularly due to the representation of the flow field distribution during earthquakes by involving reservoir fluid participation.展开更多
This research introduces a novel approach to enhancing bucket elevator design and operation through the integration of discrete element method(DEM)simulation,design of experiments(DOE),and metaheuristic optimization a...This research introduces a novel approach to enhancing bucket elevator design and operation through the integration of discrete element method(DEM)simulation,design of experiments(DOE),and metaheuristic optimization algorithms.Specifically,the study employs the firefly algorithm(FA),a metaheuristic optimization technique,to optimize bucket elevator parameters for maximizing transport mass and mass flow rate discharge of granular materials under specified working conditions.The experimental methodology involves several key steps:screening experiments to identify significant factors affecting bucket elevator operation,central composite design(CCD)experiments to further explore these factors,and response surface methodology(RSM)to create predictive models for transport mass and mass flow rate discharge.The FA algorithm is then applied to optimize these models,and the results are validated through simulation and empirical experiments.The study validates the optimized parameters through simulation and empirical experiments,comparing results with DEM simulation.The outcomes demonstrate the effectiveness of the FA algorithm in identifying optimal bucket parameters,showcasing less than 10%and 15%deviation for transport mass and mass flow rate discharge,respectively,between predicted and actual values.Overall,this research provides insights into the critical factors influencing bucket elevator operation and offers a systematic methodology for optimizing bucket parameters,contributing to more efficient material handling in various industrial applications.展开更多
This study employs the smoothed particle hydrodynamics–finite element method(SPH–FEM) coupling numerical method to investigate the impact of debris flow on reinforced concrete(RC)-frame buildings. The methodology co...This study employs the smoothed particle hydrodynamics–finite element method(SPH–FEM) coupling numerical method to investigate the impact of debris flow on reinforced concrete(RC)-frame buildings. The methodology considers the variables of debris flow depth and velocity and introduces the intensity index IDV(IDV = DV) to evaluate three different levels of debris flow impact intensity. The primary focus of this study is to investigate the dynamic response and failure mechanism of RC-frame buildings under debris flow impact, including structural failure patterns, impact force and column displacement. The results show that under a highintensity impact, a gradual collapse process of the RCframe building can be observed, and the damage mode of the frame column reflects shear failure or plastic hinge failure mechanism. First, the longitudinal infill walls are damaged owing to their low out-of-plane flexural capacity;the critical failure intensity index IDV value is approximately 7.5 m2/s. The structure cannot withstand debris flows with an intensity index IDV greater than 16 m2/s, and it is recommended that the peak impact force should not exceed 2100 k N. The impact damage ability of debris flow on buildings mostly originates from the impact force of the frontal debris flow, with the impact force of the debris flow body being approximately 42% lower than that of the debris flow head. Finally, a five-level classification system for evaluating the damage status of buildings is proposed based on the numerical simulation and investigation results of the disaster site.展开更多
Important challenges must be addressed to make wind turbines sustainable renewable energy sources.A typical problem concerns the design of the foundation.If the pile diameter is larger than that of the jacket platform...Important challenges must be addressed to make wind turbines sustainable renewable energy sources.A typical problem concerns the design of the foundation.If the pile diameter is larger than that of the jacket platform,traditional mechanical models cannot be used.In this study,relying on the seabed soil data of an offshore wind farm,the m-method and the equivalent embedded method are used to address the single-pile wind turbine foundation problem for different pile diameters.An approach to determine the equivalent pile length is also proposed accordingly.The results provide evidence for the effectiveness and reliability of the model based on the equivalent embedded method.展开更多
The sloshing in a group of rigid cylindrical tanks with baffles and on soil foundation under horizontal excitation is studied analytically.The solutions for the velocity potential are derived out by the liquid subdoma...The sloshing in a group of rigid cylindrical tanks with baffles and on soil foundation under horizontal excitation is studied analytically.The solutions for the velocity potential are derived out by the liquid subdomain method.Equivalent models with mass-spring oscillators are established to replace continuous fluid.Combined with the least square technique,Chebyshev polynomials are employed to fit horizontal,rocking and horizontal-rocking coupling impedances of soil,respectively.A lumped parameter model for impedance is presented to describe the effects of soil on tank structures.A mechanical model for the soil-foundation-tank-liquid-baffle system with small amount of calculation and high accuracy is proposed using the substructure technique.The analytical solutions are in comparison with data from reported literature and numerical codes to validate the effectiveness and correctness of the model.Detailed dynamic properties and seismic responses of the soil-tank system are given for the baffle number,size and location as well as soil parameter.展开更多
The effects of ground motion spatial variability(GMSV)or fluid-structure interaction(FSI)on the seismic responses of deep-water bridges have been extensively examined.However,there are few studies on the seismic perfo...The effects of ground motion spatial variability(GMSV)or fluid-structure interaction(FSI)on the seismic responses of deep-water bridges have been extensively examined.However,there are few studies on the seismic performance of bridges considering GMSV and FSI effects simultaneously.In this study,the original multiple-support response spectrum(MSRS)method is extended to consider FSI effect for seismic analysis of deep-water bridges.The solution of hydrodynamic pressure on a pier is obtained using the radiation wave theory,and the FSI-MSRS formulation is derived according to the random vibration theory.The influence of FSI effect on the related coefficients is analyzed.A five-span steel-concrete continuous beam bridge is adopted to conduct the numerical simulations.Different load conditions are designed to investigate the variation of the bridge responses when considering the GMSV and FSI effects.The results indicate that the incoherence effect and wave passage effect decrease the bridge responses with a maximum percentage of 86%,while the FSI effect increases the responses with a maximum percentage of 26%.The GMSV and FSI effects should be included in the seismic design of deep-water bridges.展开更多
In order to comprehensively utilize the remaining bamboo residue of bamboo products,this paper presents a research on recycling the bamboo fibers from bamboo residue for improving the performance of the asphalt mixtur...In order to comprehensively utilize the remaining bamboo residue of bamboo products,this paper presents a research on recycling the bamboo fibers from bamboo residue for improving the performance of the asphalt mixtures.First of all,the basic performance parameters of sinocalamus affinis fiber,phyllostachys pubescens fiber,green bamboo fiber were tested and analyzed,and the optimal content and length were put forward.Then,the mix ratio design of the bamboo fiber modified asphalt mixture was further designed through the response surface method,and was verified the rationality of the mix ratio.Finally,the mixture specimens were made according to the experimental design mix ratio,and the high temperature,low temperature performance and moisture susceptibility of the bamboo fiber modified mixtures asphalt were tested.The results showed that the high temperature performance,low temperature performance and moisture susceptibility of bamboo fiber modified asphalt mixtures were improved compared with the performance of SBS modified asphalt mixture.When the length of bamboo fiber is 7.25 mm and the content of 0.22%,the road performance of the asphalt mixture was optimal.Consequentially,the decomposition of bamboo residue into bamboo fiber and its application in asphalt pavement can improve the reuse of bamboo waste,with remarkable environmental benefits and great promotion value.展开更多
The response displacement method(RDM)is recommended for the seismic analysis of underground structures in the transverse direction for many codes,including bases for design of structures-seismic actions for designing ...The response displacement method(RDM)is recommended for the seismic analysis of underground structures in the transverse direction for many codes,including bases for design of structures-seismic actions for designing geotechnical works(ISO 23469)and code for seismic design of urban rail transit structures(GB 50909-2014).However,there are some obvious limitations in the application of RDM.Springs and the shear stress of the soil could be approximately evaluated for the structures having a simple cross section,such as rectangular and circular structures.It is necessary to propose simplified seismic analysis methods for structures with complex cross sections.This paper refers to the idea of RDM and proposes three generalized response displacement methods(GRDM).In GRDM1,a part of the soil surrounding a structure is selected to generate a generalized underground structure with a rectangular cross section,and the same analysis model as RDM is applied to analyze the responses of the structure.In GRDM2,a hollow soil model without a generalized structure is used to compute the equivalent load caused by the relative displacement of the soil,and the soil-structure interaction model is applied to calculate the responses of the structure.In GRDM3,a continuous soil model is applied to compute the equivalent load caused by the relative displacement and shear stress of the soil,and the soil-structure interaction model is applied to analyze the responses of the structure,which is the same as the model used in GRDM2.The time-history analysis method(THAM)is used to evaluate the accuracy of the proposed simplified methods.Results show that the error of GRDM1 is about 20%,while the error is only 5%for GRDM2 and GRDM3.Among the three proposed methods,GRDM3 has obvious advantages regarding calculation efficiency and accuracy.Therefore,it is recommended to use GRDM3 for the seismic response analysis of underground structures that have conventional simple or complex cross sections.展开更多
This paper proposed the explicit generalized-a time scheme and periodic boundary conditions in the material point method(MPM)for the simulation of coseismic site response.The proposed boundary condition uses an intuit...This paper proposed the explicit generalized-a time scheme and periodic boundary conditions in the material point method(MPM)for the simulation of coseismic site response.The proposed boundary condition uses an intuitive particle-relocation algorithm ensuring material points always remain within the computational mesh.The explicit generalized-a time scheme was implemented in MPM to enable the damping of spurious high frequency oscillations.Firstly,the MPM was verified against finite element method(FEM).Secondly,ability of the MPM in capturing the analytical transfer function was investigated.Thirdly,a symmetric embankment was adopted to investigate the effects of ground motion arias intensity(I_(a)),geometry dimensions,and constitutive models.The results show that the larger the model size,the higher the crest runout and settlement for the same ground motion.When using a Mohr-Coulomb model,the crest runout increases with increasing I_(a).However,if the strain-softening law is activated,the results are less influenced by the ground motion.Finally,the MPM results were compared with the Newmark sliding block solution.The simplified analysis herein highlights the capabilities of MPM to capture the full deformation process for earthquake engineering applications,the importance of geometry characterization,and the selection of appropriate constitutive models when simulating coseismic site response and subsequent large deformations.展开更多
In this paper,the effects of different influencing factors and factor interaction on the compressive strength and permeability of recycled aggregate pervious concrete(RAPC)were studied based on the response surface me...In this paper,the effects of different influencing factors and factor interaction on the compressive strength and permeability of recycled aggregate pervious concrete(RAPC)were studied based on the response surface method(RSM).By selecting the maximum aggregate size,water cement ratio and target porosity as design variables,combined with laboratory tests and numerical analysis,the influences of three factors on the compressive strength and permeability coefficient of RAPC were revealed.The regression equation of compressive strength and permeability coefficient of recycled aggregate pervious concrete were established based on RSM,and the response surface model was optimized to determine the optimal ratio of RAPC under the conditions of meeting the mechanical and permeability properties.The results show that the mismatch item of the model is not significant,the model is credible,and the accuracy and reliability of the test are high,but the degree of uncorrelation between the test data and the model is not obvious.The sensitivity of the three factors to the compressive strength is water cement ratio>maximum coarse aggregate particle size>target porosity,and the sensitivity to the permeability coefficient is target porosity>maximum coarse aggregate particle size>water cement ratio.The absolute errors of the model prediction results and the model optimization results are 1.28 MPa and 0.19 mm/s,and the relative errors are 5.06%and 4.19%,respectively.With high accuracy,RSM can match the measured results of compressive strength and permeability coefficient of RAPC.展开更多
[Objectives]Laoshan black tea was subjected to supercritical CO_(2) extraction. [Methods]The extraction conditions of Laoshan black tea were studied by an orthogonal experiment and optimized by response surface method...[Objectives]Laoshan black tea was subjected to supercritical CO_(2) extraction. [Methods]The extraction conditions of Laoshan black tea were studied by an orthogonal experiment and optimized by response surface methodology. [Results] The optimum extraction conditions of black tea extract by supercritical CO_(2) extraction were as follows: extraction pressure 23.53 MPa, extraction time 1.73 h, and extraction temperature 49.75 ℃, with which the extract yield could reach 5.15% theoretically. [Conclusions] Based on the traditional extraction process, a supercritical extraction method optimized by response surface methodology and a unique extraction process were formed, which enriches the extraction processes and methods of natural raw materials.展开更多
An effective optimization method for the shape/sizing design of composite wing structures is presented with satisfying weight-cutting results. After decoupling, a kind of two-layer cycled optimization strategy suitabl...An effective optimization method for the shape/sizing design of composite wing structures is presented with satisfying weight-cutting results. After decoupling, a kind of two-layer cycled optimization strategy suitable for these integrated shape/sizing optimization is obtained. The uniform design method is used to provide sample points, and approximation models for shape design variables. And the results of sizing optimization are construct- ed with the quadratic response surface method (QRSM). The complex method based on QRSM is used to opti- mize the shape design variables and the criteria method is adopted to optimize the sizing design variables. Compared with the conventional method, the proposed algorithm is more effective and feasible for solving complex composite optimization problems and has good efficiency in weight cutting.展开更多
We calculate the multicomponent responses of surface-hole transient electromagnetic method. The methods and models are unsuitable as geoelectric models of conductive surrounding rocks because they are based on regular...We calculate the multicomponent responses of surface-hole transient electromagnetic method. The methods and models are unsuitable as geoelectric models of conductive surrounding rocks because they are based on regular local targets. We also propose a calculation and analysis scheme based on numerical simulations of the subsurface transient electromagnetic fields. In the modeling of the electromagnetic fields, the forward modeling simulations are performed by using the finite-difference time-domain method and the discrete image method, which combines the Gaver–Stehfest inverse Laplace transform with the Prony method to solve the initial electromagnetic fields. The precision in the iterative computations is ensured by using the transmission boundary conditions. For the response analysis, we customize geoelectric models consisting of near-borehole targets and conductive wall rocks and implement forward modeling simulations. The observed electric fields are converted into induced electromotive force responses using multicomponent observation devices. By comparing the transient electric fields and multicomponent responses under different conditions, we suggest that the multicomponent-induced electromotive force responses are related to the horizontal and vertical gradient variations of the transient electric field at different times. The characteristics of the response are determined by the varying the subsurface transient electromagnetic fields, i.e., diffusion, attenuation and distortion, under different conditions as well as the electromagnetic fields at the observation positions. The calculation and analysis scheme of the response consider the surrounding rocks and the anomalous field of the local targets. It therefore can account for the geological data better than conventional transient field response analysis of local targets.展开更多
A new method for measuring the characteristic of electrostriction by a digital speckle correlation method (DSCM) is presented. The in-plane displacement is obtained by using the DSCM, and the out-plane displacement ...A new method for measuring the characteristic of electrostriction by a digital speckle correlation method (DSCM) is presented. The in-plane displacement is obtained by using the DSCM, and the out-plane displacement is obtained by the geometrical relation of the triangle theory. In this application, high field electrostrictive strains of barium titanate/polyurethane elastomer composite materials are measured. The electrostrictive strain is evaluated when the application of an electric field is repeated, and then the electrostrictive coefficient of the sample is obtained. To improve the measuring accuracy, the bilinear interpolation of gray value is used to obtain the sub-pixel gray value. The results are compared with those obtained from the surface fitting algorithm. The experimental results demonstrate that the electrostrictive response of polyurethane increases with the introduction of barium titanate into polyurethane. And by using the DSCM, the measurement of the characteristic of electrostriction can be done quickly and accurately. The DSCM provides an effective tool for the evaluation of electrostrictive response.展开更多
Due to the size effects of rockfill materials, the settlement difference between numerical simulation and in situ monitoring of rockfill dams is a topic of general concern.The constitutive model parameters obtained fr...Due to the size effects of rockfill materials, the settlement difference between numerical simulation and in situ monitoring of rockfill dams is a topic of general concern.The constitutive model parameters obtained from laboratory triaxial tests often underestimate the deformation of high rockfill dams.Therefore, constitutive model parameters obtained by back analysis were used to calculate and predict the long-term deformation of rockfill dams.Instead of using artificial neural networks (ANNs), the response surface method (RSM) was employed to replace the finite element simulation used in the optimization iteration.Only 27 training samples were required for RSM, improving computational efficiency compared with ANN, which required 300 training samples.RSM can be used to describe the relationship between the constitutive model parameters and dam settlements.The inversion results of the Shuibuya concrete face rockfill dam (CFRD) show that the calculated settlements agree with the measured data, indicating the accuracy and efficiency of RSM.展开更多
Tooth modification technique is widely used in gear industry to improve the meshing performance of gearings. However, few of the present studies on tooth modification considers the influence of inevitable random error...Tooth modification technique is widely used in gear industry to improve the meshing performance of gearings. However, few of the present studies on tooth modification considers the influence of inevitable random errors on gear modification effects. In order to investigate the uncertainties of tooth modification amount variations on system's dynamic behaviors of a helical planetary gears, an analytical dynamic model including tooth modification parameters is proposed to carry out a deterministic analysis on the dynamics of a helical planetary gear. The dynamic meshing forces as well as the dynamic transmission errors of the sun-planet 1 gear pair with and without tooth modifications are computed and compared to show the effectiveness of tooth modifications on gear dynamics enhancement. By using response surface method, a fitted regression model for the dynamic transmission error(DTE) fluctuations is established to quantify the relationship between modification amounts and DTE fluctuations. By shifting the inevitable random errors arousing from manufacturing and installing process to tooth modification amount variations, a statistical tooth modification model is developed and a methodology combining Monte Carlo simulation and response surface method is presented for uncertainty analysis of tooth modifications. The uncertainly analysis reveals that the system's dynamic behaviors do not obey the normal distribution rule even though the design variables are normally distributed. In addition, a deterministic modification amount will not definitely achieve an optimal result for both static and dynamic transmission error fluctuation reduction simultaneously.展开更多
Because of the randomness of many impact factors influencing the dynamic assembly relationship of complex machinery, the reliability analysis of dynamic assembly relationship needs to be accomplished considering the r...Because of the randomness of many impact factors influencing the dynamic assembly relationship of complex machinery, the reliability analysis of dynamic assembly relationship needs to be accomplished considering the randomness from a probabilistic perspective. To improve the accuracy and efficiency of dynamic assembly relationship reliability analysis, the mechanical dynamic assembly reliability(MDAR) theory and a distributed collaborative response surface method(DCRSM) are proposed. The mathematic model of DCRSM is established based on the quadratic response surface function, and verified by the assembly relationship reliability analysis of aeroengine high pressure turbine(HPT) blade-tip radial running clearance(BTRRC). Through the comparison of the DCRSM, traditional response surface method(RSM) and Monte Carlo Method(MCM), the results show that the DCRSM is not able to accomplish the computational task which is impossible for the other methods when the number of simulation is more than 100 000 times, but also the computational precision for the DCRSM is basically consistent with the MCM and improved by 0.40-4.63% to the RSM, furthermore, the computational efficiency of DCRSM is up to about 188 times of the MCM and 55 times of the RSM under 10000 times simulations. The DCRSM is demonstrated to be a feasible and effective approach for markedly improving the computational efficiency and accuracy of MDAR analysis. Thus, the proposed research provides the promising theory and method for the MDAR design and optimization, and opens a novel research direction of probabilistic analysis for developing the high-performance and high-reliability of aeroengine.展开更多
A response surface method was employed to study the effect of α-amylase concentration, hydrolysis temperature and time on the production of high protein glutinous rice flour(HPGRF). The suspension of glutinous rice f...A response surface method was employed to study the effect of α-amylase concentration, hydrolysis temperature and time on the production of high protein glutinous rice flour(HPGRF). The suspension of glutinous rice flour(15%) that contained 6.52% protein was gelatinized and subsequently hydrolyzed by thermostable α-amylase. The hydrolysis yielded 0.144–0.222 g/g HPGRF with 29.4%–45.4% protein content. Hydrolysis time exerted a significant effect, while enzyme concentration and hydrolysis temperature showed insignificant effect on the protein content and production yield of HPGRF. The result of response surface method showed that the optimum condition for the production of HPGRF that contained at least 36% protein was treating gelatinized 15% glutinous rice flour suspension with 0.90 Kilo Novo α-amylase Unit(KNU)/g α-amylase at 80 oC for 99 min. By carrying out the predicted hydrolysis condition, HPGRF with 35.9% protein and 61.8% carbohydrates was resulted. The process yielded 0.172 g/g HPGRF. HPGRF contained higher amount of essential amino acids compared to glutinous rice flour. HPGRF had higher solubility and lower swelling power, and also showed no pasting peak compared with glutinous rice flour.展开更多
Two non-probabilistic, set-theoretical methods for determining the maximum and minimum impulsive responses of structures to uncertain-but-bounded impulses are presented. They are, respectively, based on the theories o...Two non-probabilistic, set-theoretical methods for determining the maximum and minimum impulsive responses of structures to uncertain-but-bounded impulses are presented. They are, respectively, based on the theories of interval mathematics and convex models. The uncertain-but-bounded impulses are assumed to be a convex set, hyper-rectangle or ellipsoid. For the two non-probabilistic methods, less prior information is required about the uncertain nature of impulses than the probabilistic model. Comparisons between the interval analysis method and the convex model, which are developed as an anti-optimization problem of finding the least favorable impulsive response and the most favorable impulsive response, are made through mathematical analyses and numerical calculations. The results of this study indicate that under the condition of the interval vector being determined from an ellipsoid containing the uncertain impulses, the width of the impulsive responses predicted by the interval analysis method is larger than that by the convex model; under the condition of the ellipsoid being determined from an interval vector containing the uncertain impulses, the width of the interval impulsive responses obtained by the interval analysis method is smaller than that by the convex model.展开更多
Wind loading is one of the most important loads for controlling the design of large-span roof structures. Equivalent static wind loads, which can generally aim at determining a specific response, are widely used by st...Wind loading is one of the most important loads for controlling the design of large-span roof structures. Equivalent static wind loads, which can generally aim at determining a specific response, are widely used by structural designers. A method for equivalent static wind loads applicable to multi-responses is proposed in this paper. A modified load- response-correlation (LRC) method corresponding to a particular peak response is presented, and the similarity algorithm implemented for the group response is described. The main idea of the algorithm is that two responses can be put into one group if the value of one response is close to that of the other response, when the structure is subjected to equivalent static wind loads aiming at the other response. Based on the modified LRC, the grouping response method is put forward to construct equivalent static wind loading. This technique can simultaneously reproduce peak responses for some grouped responses. To verify its computational accuracy, the method is applied to an actual large-span roof structure. Calculation results show that when the similarity of responses in the same group is high, equivalent static wind loads with high accuracy and reasonable magnitude of equivalent static wind distribution can be achieved.展开更多
基金supported by Scientific Research Fund of Institute of Engineering Mechanics,China Earthquake Administration(Grant Nos.2021B06,2021C05)Heilongjiang Natural Science Foundation Joint Guidance Project(Grant No.LH2021E122).
文摘A coupled numerical calculation method combining smooth particle hydrodynamics(SPH)and the finite element method(FEM)was implemented to investigate the seismic response of horizontal storage tanks.Anumericalmodel of a horizontal storage tank featuring a free liquid surface under seismic action was constructed using the SPH–FEM coupling method.The stored liquid was discretized using SPH particles,while the tank and supports were discretized using the FEM.The interaction between the stored liquid and the tank was simulated by using the meshless particle contact method.Then,the numerical simulation results were compared and analyzed against seismic simulation shaking table test data to validate the method.Subsequently,a series of numerical models,considering different liquid storage volumes and seismic effects,were constructed to obtain time history data of base shear and top center displacement,which revealed the seismic performance of horizontal storage tanks.Numerical simulation results and experimental data showed good agreement,with an error rate of less than 18.85%.And this conformity signifies the rationality of the SPH-FEM coupling method.The base shear and top center displacement values obtained by the coupled SPH-FEM method were only 53.3% to 69.1% of those calculated by the equivalent mass method employed in the current code.As the stored liquid volume increased,the seismic response of the horizontal storage tank exhibited a gradual upward trend,with the seismic response increasing from 73% to 388% for every 35% increase in stored liquid volume.The maximum von Mises stress of the tank and the supports remained below the steel yield strength during the earthquake.The coupled SPH-FEM method holds certain advantages in studying the seismic problems of tanks with complex structural forms,particularly due to the representation of the flow field distribution during earthquakes by involving reservoir fluid participation.
基金This research was funded by the Faculty of Engineering,King Mongkut’s University of Technology North Bangkok.Contract No.ENG-NEW-66-39.
文摘This research introduces a novel approach to enhancing bucket elevator design and operation through the integration of discrete element method(DEM)simulation,design of experiments(DOE),and metaheuristic optimization algorithms.Specifically,the study employs the firefly algorithm(FA),a metaheuristic optimization technique,to optimize bucket elevator parameters for maximizing transport mass and mass flow rate discharge of granular materials under specified working conditions.The experimental methodology involves several key steps:screening experiments to identify significant factors affecting bucket elevator operation,central composite design(CCD)experiments to further explore these factors,and response surface methodology(RSM)to create predictive models for transport mass and mass flow rate discharge.The FA algorithm is then applied to optimize these models,and the results are validated through simulation and empirical experiments.The study validates the optimized parameters through simulation and empirical experiments,comparing results with DEM simulation.The outcomes demonstrate the effectiveness of the FA algorithm in identifying optimal bucket parameters,showcasing less than 10%and 15%deviation for transport mass and mass flow rate discharge,respectively,between predicted and actual values.Overall,this research provides insights into the critical factors influencing bucket elevator operation and offers a systematic methodology for optimizing bucket parameters,contributing to more efficient material handling in various industrial applications.
基金supported by the National Natural Science Foundation of China (Grant No. 41877524, No. 42172320, No. 41971214)。
文摘This study employs the smoothed particle hydrodynamics–finite element method(SPH–FEM) coupling numerical method to investigate the impact of debris flow on reinforced concrete(RC)-frame buildings. The methodology considers the variables of debris flow depth and velocity and introduces the intensity index IDV(IDV = DV) to evaluate three different levels of debris flow impact intensity. The primary focus of this study is to investigate the dynamic response and failure mechanism of RC-frame buildings under debris flow impact, including structural failure patterns, impact force and column displacement. The results show that under a highintensity impact, a gradual collapse process of the RCframe building can be observed, and the damage mode of the frame column reflects shear failure or plastic hinge failure mechanism. First, the longitudinal infill walls are damaged owing to their low out-of-plane flexural capacity;the critical failure intensity index IDV value is approximately 7.5 m2/s. The structure cannot withstand debris flows with an intensity index IDV greater than 16 m2/s, and it is recommended that the peak impact force should not exceed 2100 k N. The impact damage ability of debris flow on buildings mostly originates from the impact force of the frontal debris flow, with the impact force of the debris flow body being approximately 42% lower than that of the debris flow head. Finally, a five-level classification system for evaluating the damage status of buildings is proposed based on the numerical simulation and investigation results of the disaster site.
基金supported by the National Natural Science Foundation of China (52071055)the Fundamental Research Funds for the Central Universities (Grant No.DUT22QN237).
文摘Important challenges must be addressed to make wind turbines sustainable renewable energy sources.A typical problem concerns the design of the foundation.If the pile diameter is larger than that of the jacket platform,traditional mechanical models cannot be used.In this study,relying on the seabed soil data of an offshore wind farm,the m-method and the equivalent embedded method are used to address the single-pile wind turbine foundation problem for different pile diameters.An approach to determine the equivalent pile length is also proposed accordingly.The results provide evidence for the effectiveness and reliability of the model based on the equivalent embedded method.
基金financially supported by the National Natural Science Foundation of China(Grant Nos.51978336 and 11702117)the Science and Technology Plan Project of Department of Communications of Zhejiang Province(Grant No.2021051)Nantong City Social Livelihood Science and Technology Project(Grant No.MS22022067).
文摘The sloshing in a group of rigid cylindrical tanks with baffles and on soil foundation under horizontal excitation is studied analytically.The solutions for the velocity potential are derived out by the liquid subdomain method.Equivalent models with mass-spring oscillators are established to replace continuous fluid.Combined with the least square technique,Chebyshev polynomials are employed to fit horizontal,rocking and horizontal-rocking coupling impedances of soil,respectively.A lumped parameter model for impedance is presented to describe the effects of soil on tank structures.A mechanical model for the soil-foundation-tank-liquid-baffle system with small amount of calculation and high accuracy is proposed using the substructure technique.The analytical solutions are in comparison with data from reported literature and numerical codes to validate the effectiveness and correctness of the model.Detailed dynamic properties and seismic responses of the soil-tank system are given for the baffle number,size and location as well as soil parameter.
基金National Natural Science Foundation of China under Grant Nos.51427901 and 51678407Tianjin Municipal Education Commission under Grant No.2021KJ055Fundamental Research Funds for the Central Universities of China under Grant No.2000560616。
文摘The effects of ground motion spatial variability(GMSV)or fluid-structure interaction(FSI)on the seismic responses of deep-water bridges have been extensively examined.However,there are few studies on the seismic performance of bridges considering GMSV and FSI effects simultaneously.In this study,the original multiple-support response spectrum(MSRS)method is extended to consider FSI effect for seismic analysis of deep-water bridges.The solution of hydrodynamic pressure on a pier is obtained using the radiation wave theory,and the FSI-MSRS formulation is derived according to the random vibration theory.The influence of FSI effect on the related coefficients is analyzed.A five-span steel-concrete continuous beam bridge is adopted to conduct the numerical simulations.Different load conditions are designed to investigate the variation of the bridge responses when considering the GMSV and FSI effects.The results indicate that the incoherence effect and wave passage effect decrease the bridge responses with a maximum percentage of 86%,while the FSI effect increases the responses with a maximum percentage of 26%.The GMSV and FSI effects should be included in the seismic design of deep-water bridges.
基金Funded by the Key Research and Development Projects in Shaanxi Province(No.2022SF-328)Science and Technology Project of Shaanxi Department of Transportation(Nos.19-10K,19-28K)Science and Technology Project of Henan Department of Transportation(No.2020J-2-3)。
文摘In order to comprehensively utilize the remaining bamboo residue of bamboo products,this paper presents a research on recycling the bamboo fibers from bamboo residue for improving the performance of the asphalt mixtures.First of all,the basic performance parameters of sinocalamus affinis fiber,phyllostachys pubescens fiber,green bamboo fiber were tested and analyzed,and the optimal content and length were put forward.Then,the mix ratio design of the bamboo fiber modified asphalt mixture was further designed through the response surface method,and was verified the rationality of the mix ratio.Finally,the mixture specimens were made according to the experimental design mix ratio,and the high temperature,low temperature performance and moisture susceptibility of the bamboo fiber modified mixtures asphalt were tested.The results showed that the high temperature performance,low temperature performance and moisture susceptibility of bamboo fiber modified asphalt mixtures were improved compared with the performance of SBS modified asphalt mixture.When the length of bamboo fiber is 7.25 mm and the content of 0.22%,the road performance of the asphalt mixture was optimal.Consequentially,the decomposition of bamboo residue into bamboo fiber and its application in asphalt pavement can improve the reuse of bamboo waste,with remarkable environmental benefits and great promotion value.
基金National Natural Science Foundation of China under Grant No.52108453Natural Science Foundation of Jiangxi Province of China under Grant No.20212BAB214014+1 种基金National Key R&D Program of China under Grant No.2018YFC1504305Joint Funds of the National Natural Science Foundation of China under Grant No.U1839201。
文摘The response displacement method(RDM)is recommended for the seismic analysis of underground structures in the transverse direction for many codes,including bases for design of structures-seismic actions for designing geotechnical works(ISO 23469)and code for seismic design of urban rail transit structures(GB 50909-2014).However,there are some obvious limitations in the application of RDM.Springs and the shear stress of the soil could be approximately evaluated for the structures having a simple cross section,such as rectangular and circular structures.It is necessary to propose simplified seismic analysis methods for structures with complex cross sections.This paper refers to the idea of RDM and proposes three generalized response displacement methods(GRDM).In GRDM1,a part of the soil surrounding a structure is selected to generate a generalized underground structure with a rectangular cross section,and the same analysis model as RDM is applied to analyze the responses of the structure.In GRDM2,a hollow soil model without a generalized structure is used to compute the equivalent load caused by the relative displacement of the soil,and the soil-structure interaction model is applied to calculate the responses of the structure.In GRDM3,a continuous soil model is applied to compute the equivalent load caused by the relative displacement and shear stress of the soil,and the soil-structure interaction model is applied to analyze the responses of the structure,which is the same as the model used in GRDM2.The time-history analysis method(THAM)is used to evaluate the accuracy of the proposed simplified methods.Results show that the error of GRDM1 is about 20%,while the error is only 5%for GRDM2 and GRDM3.Among the three proposed methods,GRDM3 has obvious advantages regarding calculation efficiency and accuracy.Therefore,it is recommended to use GRDM3 for the seismic response analysis of underground structures that have conventional simple or complex cross sections.
基金funded by National Science Foundation(NSF)(Grant No.CMMI-2211002).
文摘This paper proposed the explicit generalized-a time scheme and periodic boundary conditions in the material point method(MPM)for the simulation of coseismic site response.The proposed boundary condition uses an intuitive particle-relocation algorithm ensuring material points always remain within the computational mesh.The explicit generalized-a time scheme was implemented in MPM to enable the damping of spurious high frequency oscillations.Firstly,the MPM was verified against finite element method(FEM).Secondly,ability of the MPM in capturing the analytical transfer function was investigated.Thirdly,a symmetric embankment was adopted to investigate the effects of ground motion arias intensity(I_(a)),geometry dimensions,and constitutive models.The results show that the larger the model size,the higher the crest runout and settlement for the same ground motion.When using a Mohr-Coulomb model,the crest runout increases with increasing I_(a).However,if the strain-softening law is activated,the results are less influenced by the ground motion.Finally,the MPM results were compared with the Newmark sliding block solution.The simplified analysis herein highlights the capabilities of MPM to capture the full deformation process for earthquake engineering applications,the importance of geometry characterization,and the selection of appropriate constitutive models when simulating coseismic site response and subsequent large deformations.
基金supported by the Jiangsu Water Conservancy Science and Technology Project of China(2016036).
文摘In this paper,the effects of different influencing factors and factor interaction on the compressive strength and permeability of recycled aggregate pervious concrete(RAPC)were studied based on the response surface method(RSM).By selecting the maximum aggregate size,water cement ratio and target porosity as design variables,combined with laboratory tests and numerical analysis,the influences of three factors on the compressive strength and permeability coefficient of RAPC were revealed.The regression equation of compressive strength and permeability coefficient of recycled aggregate pervious concrete were established based on RSM,and the response surface model was optimized to determine the optimal ratio of RAPC under the conditions of meeting the mechanical and permeability properties.The results show that the mismatch item of the model is not significant,the model is credible,and the accuracy and reliability of the test are high,but the degree of uncorrelation between the test data and the model is not obvious.The sensitivity of the three factors to the compressive strength is water cement ratio>maximum coarse aggregate particle size>target porosity,and the sensitivity to the permeability coefficient is target porosity>maximum coarse aggregate particle size>water cement ratio.The absolute errors of the model prediction results and the model optimization results are 1.28 MPa and 0.19 mm/s,and the relative errors are 5.06%and 4.19%,respectively.With high accuracy,RSM can match the measured results of compressive strength and permeability coefficient of RAPC.
文摘[Objectives]Laoshan black tea was subjected to supercritical CO_(2) extraction. [Methods]The extraction conditions of Laoshan black tea were studied by an orthogonal experiment and optimized by response surface methodology. [Results] The optimum extraction conditions of black tea extract by supercritical CO_(2) extraction were as follows: extraction pressure 23.53 MPa, extraction time 1.73 h, and extraction temperature 49.75 ℃, with which the extract yield could reach 5.15% theoretically. [Conclusions] Based on the traditional extraction process, a supercritical extraction method optimized by response surface methodology and a unique extraction process were formed, which enriches the extraction processes and methods of natural raw materials.
文摘An effective optimization method for the shape/sizing design of composite wing structures is presented with satisfying weight-cutting results. After decoupling, a kind of two-layer cycled optimization strategy suitable for these integrated shape/sizing optimization is obtained. The uniform design method is used to provide sample points, and approximation models for shape design variables. And the results of sizing optimization are construct- ed with the quadratic response surface method (QRSM). The complex method based on QRSM is used to opti- mize the shape design variables and the criteria method is adopted to optimize the sizing design variables. Compared with the conventional method, the proposed algorithm is more effective and feasible for solving complex composite optimization problems and has good efficiency in weight cutting.
基金supported by the Young Scientists Fund of the National Natural Science Foundation of China(No.41304082)the China Postdoctoral Science Foundation(No.2016M590731)+2 种基金the Young Scientists Fund of the Natural Science Foundation of Hebei Province(No.D2014403011)the Program for Young Excellent Talents of Higher Education Institutions of Hebei Province(No.BJ2016046)the Geological survey project of China Geological Survey(No.1212011121197)
文摘We calculate the multicomponent responses of surface-hole transient electromagnetic method. The methods and models are unsuitable as geoelectric models of conductive surrounding rocks because they are based on regular local targets. We also propose a calculation and analysis scheme based on numerical simulations of the subsurface transient electromagnetic fields. In the modeling of the electromagnetic fields, the forward modeling simulations are performed by using the finite-difference time-domain method and the discrete image method, which combines the Gaver–Stehfest inverse Laplace transform with the Prony method to solve the initial electromagnetic fields. The precision in the iterative computations is ensured by using the transmission boundary conditions. For the response analysis, we customize geoelectric models consisting of near-borehole targets and conductive wall rocks and implement forward modeling simulations. The observed electric fields are converted into induced electromotive force responses using multicomponent observation devices. By comparing the transient electric fields and multicomponent responses under different conditions, we suggest that the multicomponent-induced electromotive force responses are related to the horizontal and vertical gradient variations of the transient electric field at different times. The characteristics of the response are determined by the varying the subsurface transient electromagnetic fields, i.e., diffusion, attenuation and distortion, under different conditions as well as the electromagnetic fields at the observation positions. The calculation and analysis scheme of the response consider the surrounding rocks and the anomalous field of the local targets. It therefore can account for the geological data better than conventional transient field response analysis of local targets.
基金Foundation items:The National Natural Science Foundation of China(No.10472026)the Natural Science Foundation of Jiangsu Province(No.BK2003063).
文摘A new method for measuring the characteristic of electrostriction by a digital speckle correlation method (DSCM) is presented. The in-plane displacement is obtained by using the DSCM, and the out-plane displacement is obtained by the geometrical relation of the triangle theory. In this application, high field electrostrictive strains of barium titanate/polyurethane elastomer composite materials are measured. The electrostrictive strain is evaluated when the application of an electric field is repeated, and then the electrostrictive coefficient of the sample is obtained. To improve the measuring accuracy, the bilinear interpolation of gray value is used to obtain the sub-pixel gray value. The results are compared with those obtained from the surface fitting algorithm. The experimental results demonstrate that the electrostrictive response of polyurethane increases with the introduction of barium titanate into polyurethane. And by using the DSCM, the measurement of the characteristic of electrostriction can be done quickly and accurately. The DSCM provides an effective tool for the evaluation of electrostrictive response.
基金supported by the National Natural Science Foundation of China(Grant No.51579193)the Science and Technology Planning Project of Guizhou Province(Grant No.[2016]1154)
文摘Due to the size effects of rockfill materials, the settlement difference between numerical simulation and in situ monitoring of rockfill dams is a topic of general concern.The constitutive model parameters obtained from laboratory triaxial tests often underestimate the deformation of high rockfill dams.Therefore, constitutive model parameters obtained by back analysis were used to calculate and predict the long-term deformation of rockfill dams.Instead of using artificial neural networks (ANNs), the response surface method (RSM) was employed to replace the finite element simulation used in the optimization iteration.Only 27 training samples were required for RSM, improving computational efficiency compared with ANN, which required 300 training samples.RSM can be used to describe the relationship between the constitutive model parameters and dam settlements.The inversion results of the Shuibuya concrete face rockfill dam (CFRD) show that the calculated settlements agree with the measured data, indicating the accuracy and efficiency of RSM.
基金Supported by National Natural Science Foundation of China(Grant No.51375013)Anhui Provincial Natural Science Foundation of China(Grant No.1208085ME64)
文摘Tooth modification technique is widely used in gear industry to improve the meshing performance of gearings. However, few of the present studies on tooth modification considers the influence of inevitable random errors on gear modification effects. In order to investigate the uncertainties of tooth modification amount variations on system's dynamic behaviors of a helical planetary gears, an analytical dynamic model including tooth modification parameters is proposed to carry out a deterministic analysis on the dynamics of a helical planetary gear. The dynamic meshing forces as well as the dynamic transmission errors of the sun-planet 1 gear pair with and without tooth modifications are computed and compared to show the effectiveness of tooth modifications on gear dynamics enhancement. By using response surface method, a fitted regression model for the dynamic transmission error(DTE) fluctuations is established to quantify the relationship between modification amounts and DTE fluctuations. By shifting the inevitable random errors arousing from manufacturing and installing process to tooth modification amount variations, a statistical tooth modification model is developed and a methodology combining Monte Carlo simulation and response surface method is presented for uncertainty analysis of tooth modifications. The uncertainly analysis reveals that the system's dynamic behaviors do not obey the normal distribution rule even though the design variables are normally distributed. In addition, a deterministic modification amount will not definitely achieve an optimal result for both static and dynamic transmission error fluctuation reduction simultaneously.
基金supported by National Natural Science Foundation of China(Grant Nos.51175017,51245027)Innovation Foundation of Beihang University for PhD Graduates,China(Grant No.YWF-12-RBYJ008)Research Fund for the Doctoral Program of Higher Education of China(Grant No.20111102110011)
文摘Because of the randomness of many impact factors influencing the dynamic assembly relationship of complex machinery, the reliability analysis of dynamic assembly relationship needs to be accomplished considering the randomness from a probabilistic perspective. To improve the accuracy and efficiency of dynamic assembly relationship reliability analysis, the mechanical dynamic assembly reliability(MDAR) theory and a distributed collaborative response surface method(DCRSM) are proposed. The mathematic model of DCRSM is established based on the quadratic response surface function, and verified by the assembly relationship reliability analysis of aeroengine high pressure turbine(HPT) blade-tip radial running clearance(BTRRC). Through the comparison of the DCRSM, traditional response surface method(RSM) and Monte Carlo Method(MCM), the results show that the DCRSM is not able to accomplish the computational task which is impossible for the other methods when the number of simulation is more than 100 000 times, but also the computational precision for the DCRSM is basically consistent with the MCM and improved by 0.40-4.63% to the RSM, furthermore, the computational efficiency of DCRSM is up to about 188 times of the MCM and 55 times of the RSM under 10000 times simulations. The DCRSM is demonstrated to be a feasible and effective approach for markedly improving the computational efficiency and accuracy of MDAR analysis. Thus, the proposed research provides the promising theory and method for the MDAR design and optimization, and opens a novel research direction of probabilistic analysis for developing the high-performance and high-reliability of aeroengine.
文摘A response surface method was employed to study the effect of α-amylase concentration, hydrolysis temperature and time on the production of high protein glutinous rice flour(HPGRF). The suspension of glutinous rice flour(15%) that contained 6.52% protein was gelatinized and subsequently hydrolyzed by thermostable α-amylase. The hydrolysis yielded 0.144–0.222 g/g HPGRF with 29.4%–45.4% protein content. Hydrolysis time exerted a significant effect, while enzyme concentration and hydrolysis temperature showed insignificant effect on the protein content and production yield of HPGRF. The result of response surface method showed that the optimum condition for the production of HPGRF that contained at least 36% protein was treating gelatinized 15% glutinous rice flour suspension with 0.90 Kilo Novo α-amylase Unit(KNU)/g α-amylase at 80 oC for 99 min. By carrying out the predicted hydrolysis condition, HPGRF with 35.9% protein and 61.8% carbohydrates was resulted. The process yielded 0.172 g/g HPGRF. HPGRF contained higher amount of essential amino acids compared to glutinous rice flour. HPGRF had higher solubility and lower swelling power, and also showed no pasting peak compared with glutinous rice flour.
基金The project supported by the National Outstanding Youth Science Foundation of China (10425208)the National Natural Science Foundation of ChinaInstitute of Engineering Physics of China (10376002) The English text was polished by Keren Wang
文摘Two non-probabilistic, set-theoretical methods for determining the maximum and minimum impulsive responses of structures to uncertain-but-bounded impulses are presented. They are, respectively, based on the theories of interval mathematics and convex models. The uncertain-but-bounded impulses are assumed to be a convex set, hyper-rectangle or ellipsoid. For the two non-probabilistic methods, less prior information is required about the uncertain nature of impulses than the probabilistic model. Comparisons between the interval analysis method and the convex model, which are developed as an anti-optimization problem of finding the least favorable impulsive response and the most favorable impulsive response, are made through mathematical analyses and numerical calculations. The results of this study indicate that under the condition of the interval vector being determined from an ellipsoid containing the uncertain impulses, the width of the impulsive responses predicted by the interval analysis method is larger than that by the convex model; under the condition of the ellipsoid being determined from an interval vector containing the uncertain impulses, the width of the interval impulsive responses obtained by the interval analysis method is smaller than that by the convex model.
基金Ministry of Science and Technology of China Under Grant No.SLDRCE10-B-04the National Natural Science Foundation Under Grant No.50621062
文摘Wind loading is one of the most important loads for controlling the design of large-span roof structures. Equivalent static wind loads, which can generally aim at determining a specific response, are widely used by structural designers. A method for equivalent static wind loads applicable to multi-responses is proposed in this paper. A modified load- response-correlation (LRC) method corresponding to a particular peak response is presented, and the similarity algorithm implemented for the group response is described. The main idea of the algorithm is that two responses can be put into one group if the value of one response is close to that of the other response, when the structure is subjected to equivalent static wind loads aiming at the other response. Based on the modified LRC, the grouping response method is put forward to construct equivalent static wind loading. This technique can simultaneously reproduce peak responses for some grouped responses. To verify its computational accuracy, the method is applied to an actual large-span roof structure. Calculation results show that when the similarity of responses in the same group is high, equivalent static wind loads with high accuracy and reasonable magnitude of equivalent static wind distribution can be achieved.