This paper represents a detailed and systematic review of one of the most ongoing applications of computational fluid dynamics(CFD)in biomedical applications.Beyond its various engineering applications,CFD has started...This paper represents a detailed and systematic review of one of the most ongoing applications of computational fluid dynamics(CFD)in biomedical applications.Beyond its various engineering applications,CFD has started to establish a presence in the biomedical field.Cardiac abnormality,a familiar health issue,is an essential point of investigation by research analysts.Diagnostic modalities provide cardiovascular structural information but give insufficient information about the hemodynamics of blood.The study of hemodynamic parameters can be a potential measure for determining cardiovascular abnormalities.Numerous studies have explored the rheological behavior of blood experimentally and numerically.This paper provides insight into how researchers have incorporated the pulsatile nature of the blood experimentally,numerically,or through various simulations over the years.It focuses on how machine learning platforms derive outputs based on mass and momentum conservation to predict the velocity and pressure profile,analyzing various cardiac diseases for clinical applications.This will pave the way toward responsive AI in cardiac healthcare,improving productivity and quality in the healthcare industry.The paper shows how CFD is a vital tool for efficiently studying the flow in arteries.The review indicates this biomedical simulation and its applications in healthcare using machine learning and AI.Developing AI-based CFD models can impact society and foster the advancement towards responsive AI.展开更多
Apple replant disease(ARD)has led to severe yield and quality reduction in the apple industry.Fusarium solani(F.solani)has been identified as one of the main microbial pathogens responsible for ARD.Auxin(indole-3-acet...Apple replant disease(ARD)has led to severe yield and quality reduction in the apple industry.Fusarium solani(F.solani)has been identified as one of the main microbial pathogens responsible for ARD.Auxin(indole-3-acetic acid,IAA),an endogenous hormone in plants,is involved in almost all plant growth and development processes and plays a role in plant immunity against pathogens.Gretchen Hagen3(GH3)is one of the early/primary auxin response genes.The aim of this study was to evaluate the function of MdGH3-2 and MdGH3-12 in the defense response of F.solani by treating MdGH3-2/12 RNAi plants with F.solani.The results show that under F.solani infection,RNAi of MdGH3-2/12 inhibited plant biomass accumulation and exacerbated root damage.After inoculation with F.solani,MdGH3-2/12 RNAi inhibited the biosynthesis of acid-amido synthetase.This led to the inhibition of free IAA combining with amino acids,resulting in excessive free IAA accumulation.This excessive free IAA altered plant tissue structure,accelerated fungal hyphal invasion,reduced the activity of antioxidant enzymes(SOD,POD and CAT),increased the reactive oxygen species(ROS)level,and reduced total chlorophyll content and photosynthetic ability,while regulating the expression of PR-related genes including PR1,PR4,PR5 and PR8.It also changed the contents of plant hormones and amino acids,and ultimately reduced the resistance to F.solani.In conclusion,these results demonstrate that MdGH3-2 and MdGH3-12 play an important role in apple tolerance to F.solani and ARD.展开更多
pH-responsive charge reversal loaded miRNA nanocomposite was prepared by electrostatic self-assembly.The morphology,particle size and zeta potential of the nanocomposites were analyzed by transmission electron microsc...pH-responsive charge reversal loaded miRNA nanocomposite was prepared by electrostatic self-assembly.The morphology,particle size and zeta potential of the nanocomposites were analyzed by transmission electron microscopy and dynamic light scattering.The synthesis of the polymer was analyzed by^(1)H-NMR.The zeta-potential changes and cellular uptake effects of the nanocomplexes under different pH environments were investigated.The experimental results show that the surface morphology of the nanocomposite is spherical,and the average particle size is about 135 nm.As the pH value of the solution gradually decreases,the surface charge of the nanocomposite reverses from negative charge to positive charge(from-9.4 to+17.1 mV).Cellular uptake mediated by pH-responsive nanocomposite is selective for tumor cells,and the cellular uptake effect in tumor cells at pH 6.5 was approximately 3 times higher than that at pH 7.4.This pH responsive charge reversal nanocomposite has promising application prospects for gene delivery in the weak acid environment of tumors.展开更多
The precise combination of conflicting biological properties through sophisticated structural and functional design to meet all the requirements of anastomotic healing is of great demand but remains challenging.Here,w...The precise combination of conflicting biological properties through sophisticated structural and functional design to meet all the requirements of anastomotic healing is of great demand but remains challenging.Here,we develop a smart responsive anastomotic staple(Ti–OH-MC)by integrating porous titanium anastomotic staple with multifunctional polytannic acid/tannic acid coating.This design achieves dynamic sequential regulation of antibacterial,anti-inflammatory,and cell proliferation properties.During the inflammatory phase of the anastomotic stoma,our Ti–OH-MC can release tannic acid to provide antibacterial and anti-inflammatory properties,together with immune microenvironment regulation function.At the same time,as the healing progresses,the multifunctional coating gradually falls off to expose the porous structure of the titanium anastomotic staple,which promotes cell adhesion and proliferation during the later proliferative and remodeling phases.As a result,our Ti–OH-MC exceeds the properties of clinically used titanium anastomotic staple,and can effectively promote the healing.The staple’s preparation strategy is simple and biocompatible,promising for industrialisation and clinical application.This work provides an effective anastomotic staple for anastomotic stoma healing and serve as a reference for the functional design and preparation of other types of titanium-based tissue repair materials.展开更多
Hydrogen sulfide(H_(2)S)is a toxic,essential gas used in various biological and physical processes and has been the subject of many targeted studies on its role as a new gas transmitter.These studies have mainly focus...Hydrogen sulfide(H_(2)S)is a toxic,essential gas used in various biological and physical processes and has been the subject of many targeted studies on its role as a new gas transmitter.These studies have mainly focused on the production and pharmacological side effects caused by H_(2)S.Therefore,effective strategies to remove H_(2)S has become a key research topic.Furthermore,the development of novel nanoplatforms has provided new tools for the targeted removal of H_(2)S.This paper was performed to review the association between H_(2)S anddisease,relatedH_(2)S inhibitory drugs,aswell as H_(2)S responsive nanoplatforms(HRNs).This review first analyzed the role of H_(2)S in multiple tissues and conditions.Second,common drugs used to eliminate H_(2)S,as well as their potential for combination with anticancer agents,were summarized.Not only the existing studies on HRNs,but also the inhibition H_(2)S combined with different therapeutic methods were both sorted out in this review.Furthermore,this review provided in-depth analysis of the potential of HRNs about treatment or detection in detail.Finally,potential challenges of HRNs were proposed.This study demonstrates the excellent potential of HRNs for biomedical applications.展开更多
Nanofiber membranes(NFMs) have become attractive candidates for next-generation flexible transparent materials due to their exceptional flexibility and breathability. However, improving the transmittance of NFMs is a ...Nanofiber membranes(NFMs) have become attractive candidates for next-generation flexible transparent materials due to their exceptional flexibility and breathability. However, improving the transmittance of NFMs is a great challenge due to the enormous reflection and incredibly poor transmission generated by the nanofiber-air interface. In this research, we report a general strategy for the preparation of flexible temperature-responsive transparent(TRT) membranes,which achieves a rapid transformation of NFMs from opaque to highly transparent under a narrow temperature window. In this process, the phase change material eicosane is coated on the surface of the polyurethane nanofibers by electrospray technology. When the temperature rises to 37 ℃, eicosane rapidly completes the phase transition and establishes the light transmission path between the nanofibers, preventing light loss from reflection at the nanofiber-air interface. The resulting TRT membrane exhibits high transmittance(> 90%), and fast response(5 s). This study achieves the first TRT transition of NFMs, offering a general strategy for building highly transparent nanofiber materials, shaping the future of next-generation intelligent temperature monitoring, anti-counterfeiting measures, and other high-performance devices.展开更多
Demand-responsive transportation(DRT)is a flexible passenger service designed to enhance road efficiency,reduce peak-hour traffic,and boost passenger satisfaction.However,existing optimization methods for initial pass...Demand-responsive transportation(DRT)is a flexible passenger service designed to enhance road efficiency,reduce peak-hour traffic,and boost passenger satisfaction.However,existing optimization methods for initial passenger requests fall short in addressing real-time passenger needs.Consequently,there is a need to develop realtime DRT route optimization methods that integrate both initial and real-time requests.This paper presents a twostage,multi-objective optimization model for DRT vehicle scheduling.The first stage involves an initial scheduling model aimed at minimizing vehicle configuration,and operational,and CO_(2)emission costs while ensuring passenger satisfaction.The second stage develops a real-time scheduling model to minimize additional operational costs,penalties for time window violations,and costs due to rejected passengers,thereby addressing real-time demands.Additionally,an enhanced genetic algorithm based on Non-dominated Sorting Genetic Algorithm-II(NSGA-II)is designed,incorporating multiple crossover points to accelerate convergence and improve solution efficiency.The proposed scheduling model is validated using a real network in Shanghai.Results indicate that realtime scheduling can serve more passengers,and improve vehicle utilization and occupancy rates,with only a minor increase in total operational costs.Compared to the traditional NSGA-II algorithm,the improved version enhances convergence speed by 31.7%and solution speed by 4.8%.The proposed model and algorithm offer both theoretical and practical guidance for real-world DRT scheduling.展开更多
Embryonic development is a critical period for phenotype formation.Environmental variation during embryonic development can induce changes in postnatal phenotypes of animals.The thyroxine secretion and aerobic metabol...Embryonic development is a critical period for phenotype formation.Environmental variation during embryonic development can induce changes in postnatal phenotypes of animals.The thyroxine secretion and aerobic metabolic activity of small birds are important phenotypes closely related to their winter survival.In the context of climate change,it is necessary to determine whether temperature variation during incubation in birds leads to developmental plasticity of these cold responsive phenotypes.We incubated Japanese Quail(Coturnix japonica)eggs at 36.8℃,37.8℃,and 38.8℃,and raised the chicks to 35-day old at 22℃with same raising conditions,then all the quails were exposed to gradually temperature dropping environment(from 15℃to 0℃).After cold treatment,serum T3 level,resting metabolic rate,skeletal muscle and liver metabolomes of the birds were measured.The serum T3 levels were significantly lower in the 38.8℃group and significantly higher in the 36.8℃group compared to the 37.8℃group.The metabolic rate in the 38.8℃group was significantly lower compared to the 37.8℃group.Compared with the 37.8℃group,metabolites involved in the tricarboxylic acid cycle in the liver were significantly lower in the 38.8℃group,and metabolites related to lipid oxidation metabolism and fatty acid biosynthesis were significantly lower in the skeletal muscles in the 38.8℃group but significantly higher in the 36.8℃group.These results indicate that incubation temperature variation can lead to developmental plasticity in cold responsive physiological phenotypes.Higher incubation temperature may impair the capacity of birds coping with cold challenge.展开更多
AIM:To investigate the biocompatibility and bacterial adhesion properties of light responsive materials(LRM)and analyze the feasibility and biosafety of employing LRM in the preparation of accommodative intraocular le...AIM:To investigate the biocompatibility and bacterial adhesion properties of light responsive materials(LRM)and analyze the feasibility and biosafety of employing LRM in the preparation of accommodative intraocular lenses(AIOLs).METHODS:Employing fundamental experimental research techniques,LRM with human lens epithelial cells(hLECs)and human retinal pigment epithelium cells(ARPE-19 cells)were co-cultured.Commercially available intraocular lenses(IOLs)were used as controls to perform cell counting kit-8(CCK-8),cell staining under varying light intensities,cell adhesion and bacterial adhesion experiments.RESULTS:LRM exhibited a stronger inhibitory effect on the proliferation of ARPE19 cells than commercially available IOLs when co-cultured with the undiluted extract for 96h(P<0.05).Under other culturing conditions,the effects on the proliferation of hLECs and ARPE-19 cells were not significantly different between the two materials.Under the influence of light irradiation at intensities of 200 and 300 mW/cm^(2),LRM demonstrated a markedly higher inhibitory effect on the survival of hLECs compared to commercially available IOLs(P<0.0001).They also showed a stronger suppressive effect on the survival rate of ARPE-19 cells,with significant differences observed at 200 mW/cm^(2)(P<0.001)and extremely significant differences at 300 mW/cm^(2)(P<0.0001).Additionally,compared to commercially available IOLs,LRM had a higher number of cells adhering to their surface(P<0.05),as well as a significantly greater number of adherent bacterium(P<0.0001).CONCLUSION:LRM,characterized by their excellent non-contact tunable deformability and low cytotoxicity to ocular tissues,show considerable potential for use in the fabrication of AIOLs.These materials demonstrate strong cell adhesion;however,during photothermal conversion processes involving shape deformation under various light intensities,the resultant temperature rise may harm surrounding cells.These factors suggest that while the material plays a positive role in reducing the incidence of posterior capsule opacification(PCO),it also poses potential risks for retinal damage.Additionally,the strong bacterial adhesion of these materials indicates an increased risk of endophthalmitis.展开更多
In the application of polymer gels to profile control and water shutoff,the gelation time will directly determine whether the gel can"go further"in the formation,but the most of the methods for delaying gel ...In the application of polymer gels to profile control and water shutoff,the gelation time will directly determine whether the gel can"go further"in the formation,but the most of the methods for delaying gel gelation time are complicated or have low responsiveness.There is an urgent need for an effective method for delaying gel gelation time with intelligent response.Inspired by the slow-release effect of drug capsules,this paper uses the self-assembly effect of gas-phase hydrophobic SiO_(2) in aqueous solution as a capsule to prepare an intelligent responsive self-assembled micro-nanocapsules.The capsule slowly releases the cross-linking agent under the stimulation of external conditions such as temperature and pH value,thus delaying gel gelation time.When the pH value is 2 and the concentration of gas-phase hydrophobic SiO_(2) particles is 10%,the gelation time of the capsule gel system at 30,60,90,and 120℃is12.5,13.2,15.2,and 21.1 times longer than that of the gel system without containing capsule,respectively.Compared with other methods,the yield stress of the gel without containing capsules was 78 Pa,and the yield stress after the addition of capsules was 322 Pa.The intelligent responsive self-assembled micronanocapsules prepared by gas-phase hydrophobic silica nanoparticles can not only delay the gel gelation time,but also increase the gel strength.The slow release of cross-linking agent from capsule provides an effective method for prolongating the gelation time of polymer gels.展开更多
We developed a fluorescent double network hydrogel with ionic responsiveness and high mechanical properties for visual detection.The nanocomposite hydrogel of laponite and polyacrylamide serves as the first network,wh...We developed a fluorescent double network hydrogel with ionic responsiveness and high mechanical properties for visual detection.The nanocomposite hydrogel of laponite and polyacrylamide serves as the first network,while the ionic cross-linked hydrogel of terbium ions and sodium alginate serves as the second network.The double-network structure,the introduction of nanoparticles and the reversible ionic crosslinked interactions confer high mechanical properties to the hydrogel.Terbium ions are not only used as the ionic cross-linked points,but also used as green emitters to endow hydrogels with fluorescent properties.On the basis of the “antenna effect” of terbium ions and the ion exchange interaction,the fluorescence of the hydrogels can make selective responses to various ions(such as organic acid radical ions,transition metal ions) in aqueous solutions,which enables a convenient strategy for visual detection toward ions.Consequently,the fluorescent double network hydrogel fabricated in this study is promising for use in the field of visual sensor detection.展开更多
Objective:To evaluate the effect of rosmarinic acid on tracheal smooth muscle responsiveness and lung pathological changes in ovalbumin-sensitized rats.Methods:Rats were randomly divided into six groups:the control gr...Objective:To evaluate the effect of rosmarinic acid on tracheal smooth muscle responsiveness and lung pathological changes in ovalbumin-sensitized rats.Methods:Rats were randomly divided into six groups:the control group,the asthmatic group,and the asthmatic groups treated with dexamethasone(1 mg/kg;oral gavage)or three doses of rosmarinic acid(0.5,1,and 2 mg/kg;oral gavage).For induction of asthma,rats received intraperitoneal injections and inhalation of ovalbumin.After 21 days,bronchoalveolar lavage fluid and lung samples were collected for histopathological analyses.Moreover,total and differential white blood cell counts were determined.Results:The rosmarinic acid-treated group had significantly lower tracheal smooth muscle responses to methacholine than the asthmatic group.In addition,rosmarinic acid reduced white blood cell count and the percentages of eosinophils,monocytes,and neutrophils while increasing the percentage of lymphocytes.Ovalbumin-induced lung pathological changes were significantly improved by treatment with rosmarinic acid.Conclusions:Rosmarinic acid improves tracheal smooth muscle responsiveness and lung pathological changes in ovalbumin-sensitized rats.展开更多
The development of tumor drug microcarriers has attracted considerable interest due to their distinctive therapeutic performances.Current attempts tend to elab-orate on the micro/nano-structure design of the microcarr...The development of tumor drug microcarriers has attracted considerable interest due to their distinctive therapeutic performances.Current attempts tend to elab-orate on the micro/nano-structure design of the microcarriers to achieve multiple drug delivery and spatiotemporal responsive features.Here,the desired hydrogel microspheres are presented with spatiotemporal responsiveness for the treatment of gastric cancer.The microspheres are generated based on inverse opals,their skele-ton is fabricated by biofriendly hyaluronic acid methacrylate(HAMA)and gelatin methacrylate(GelMA),and is thenfilled with a phase-changing hydrogel composed offish gelatin and agarose.Besides,the incorporated black phosphorus quantum dots(BPQDs)within thefilling hydrogel endow the microspheres with outstanding pho-tothermal responsiveness.Two antitumor drugs,sorafenib(SOR)and doxorubicin(DOX),are loaded in the skeleton andfilling hydrogel,respectively.It is found that the drugs show different release profiles upon near-infrared(NIR)irradiation,which exerts distinct performances in a controlled manner.Through both in vitro and in vivo experiments,it is demonstrated that such microspheres can significantly reduce tumor cell viability and enhance the efficiency in treating gastric cancer,indicating a promising stratagem in thefield of drug delivery and tumor therapy.展开更多
Background:Given that the formation of eating behaviors in childhood is largely dependent on parental feeding,it is necessary to consider eating behaviors along with feeding behaviors when exploring child nutrition.Re...Background:Given that the formation of eating behaviors in childhood is largely dependent on parental feeding,it is necessary to consider eating behaviors along with feeding behaviors when exploring child nutrition.Responsive feeding can not only promote the development of self-regulation ability,prevent overweight and obesity,and develop healthy dietary behaviors but also enhance the psychosocial ability,cognitive ability,and language ability of infants.it is of great significance for the growth and development of infants to identify whether the feeding behavior of caregivers is responsive feeding as early as possible.Methods:The progress of the literature summarizes the relevant concepts,evaluation tools,and the relationship between responsive feeding and dietary behavior.Results:This is a fact that China lacks the unified response feeding definition and responsive feeding evaluation tools suitable for homes in China.The relationship between responsive feeding and dietary behavior is in the stage of infancy,and systematic response feeding and dietary behavior have not been formed.Conclusion:It is time to pay attention to the dietary behavior of Chinese children.Intervening measures such as promoting the application of responsive feeding should be actively carry out,accordingly,childhood obesity can be prevented.展开更多
Inflammatory bowel disease (IBD) is a group of chronic, nonspecific intestinal inflammatory disorders characterized by localized and systemic inflammation. The use of biologic agents in the treatment of IBD patients i...Inflammatory bowel disease (IBD) is a group of chronic, nonspecific intestinal inflammatory disorders characterized by localized and systemic inflammation. The use of biologic agents in the treatment of IBD patients is widespread, and the occurrence of primary non-responsiveness during treatment is also significant. This review briefly summarizes the possible reasons for primary non-responsiveness in IBD patients, as well as predictive markers and current strategies to address it, providing a theoretical reference for early identification and management of IBD patients who do not respond to treatment.展开更多
Micro/nanorobots can propel and navigate in many hard-to-reach biological environments,and thus may bring revolutionary changes to biomedical research and applications.However,current MNRs lack the capability to colle...Micro/nanorobots can propel and navigate in many hard-to-reach biological environments,and thus may bring revolutionary changes to biomedical research and applications.However,current MNRs lack the capability to collectively perceive and report physicochemical changes in unknown microenvironments.Here we propose to develop swarming responsive photonic nanorobots that can map local physicochemical conditions on the fly and further guide localized photothermal treatment.The RPNRs consist of a photonic nanochain of periodically-assembled magnetic Fe_(3)O_(4)nanoparticles encapsulated in a responsive hydrogel shell,and show multiple integrated functions,including energetic magnetically-driven swarming motions,bright stimuli-responsive structural colors,and photothermal conversion.Thus,they can actively navigate in complex environments utilizing their controllable swarming motions,then visualize unknown targets(e.g.,tumor lesion)by collectively mapping out local abnormal physicochemical conditions(e.g.,pH,temperature,or glucose concentra-tion)via their responsive structural colors,and further guide external light irradiation to initiate localized photothermal treatment.This work facilitates the development of intelligent motile nanosensors and versatile multifunctional nanotheranostics for cancer and inflam-matory diseases.展开更多
The traditional multi-process to enhance tight oil recovery based on fracturing and huff-n-puff has obvious deficiencies,such as low recovery efficiency,rapid production decline,high cost,and complexity,etc.Therefore,...The traditional multi-process to enhance tight oil recovery based on fracturing and huff-n-puff has obvious deficiencies,such as low recovery efficiency,rapid production decline,high cost,and complexity,etc.Therefore,a new technology,the so-called fracturing-oil expulsion integration,which does not need flowback after fracturing while making full use of the fracturing energy and gel breaking fluids,are needed to enable efficient exploitation of tight oil.A novel triple-responsive smart fluid based on“pseudo-Gemini”zwitterionic viscoelastic surfactant(VES)consisting of N-erucylamidopropyl-N,N-dimethyl-3-ammonio-2-hydroxy-1-propane-sulfonate(EHSB),N,N,N′,N′-tetramethyl-1,3-propanediamine(TMEDA)and sodium p-toluenesulfonate(NaPts),is developed.Then,the rheology of smart fluid is systematically studied at varying conditions(CO_(2),temperature and pressure).Moreover,the mechanism of triple-response is discussed in detail.Finally,a series of fracturing and spontaneous imbibition performances are systematically investigated.The smart fluid shows excellent CO_(2)-,thermal-,and pressure-triple responsive behavior.It can meet the technical requirement of tight oil fracturing construction at 140°C in the presence of 3.5 MPa CO_(2).The gel breaking fluid shows excellent spontaneous imbibition oil expulsion(∼40%),salt resistance(1.2×104 mg/L Na+),temperature resistance(140°C)and aging stability(30 days).展开更多
Acyl-CoA-binding proteins(ACBPs)are important for the transport of acyl groups for macro molecular biosynthesis involved in plant growth,development,and diverse stress(e.g.,cold,drought,salinity,and heavy metals)respo...Acyl-CoA-binding proteins(ACBPs)are important for the transport of acyl groups for macro molecular biosynthesis involved in plant growth,development,and diverse stress(e.g.,cold,drought,salinity,and heavy metals)responses.Here,we report the phylogeny and characteristics of the ACBP family in the woody plant Populus trichocarpa.Eight genes encoding ACBP proteins were identified,and they are distributed on eight chromosomes in P.trichocarpa.These PtACBP genes were divided into four subgroups according to gene structure,conserved motifs and phylogenetic relationship.Promoter analysis revealed that cis-elements were related to stress response,phytohormone response,and physical and reproductive growth regulation.Expression levels of PtACBP genes varied among different organs,with the highest expression in leaves and the lowest in stems.Quantitative real-time PCR(qRT-PCR)analysis showed that under salinity-alkali stresses(i.e.,200 mM NaCl,75 mM Na2CO3,and 100 mM NaHCO3),four(PtACBP1,PtACBP3,PtACBP4 and PtACBP8)of eight PtACBP genes were significantly induced in roots and leaves.These data provide a comprehensive analysis of the ACBPs family in P.trichocarpa,which could be useful for gene function analyses.展开更多
Food allergy has become a significant public health problem affecting a large number of people worldwide.Maternal obesity causes inflammation and alters the immune system of offspring,which may exacerbate their food a...Food allergy has become a significant public health problem affecting a large number of people worldwide.Maternal obesity causes inflammation and alters the immune system of offspring,which may exacerbate their food allergy.The aim of this study was to determine whether offspring mice born to obese mothers would have more serve reactions to cow's milk protein-induced food allergy,and further investigate the underlying mechanisms.Female offspring BALB/c mice of mothers with normal and high-fat diets were sensitized withβ-lactoglobulin(BLG),respectively.Maternal obesity increased the serum immunoglobulin E and mouse mast cell protease levels,though did not have significant influence on anaphylactic symptom score,core temperature and diarrhea rate of offspring mice after BLG sensitization.Furthermore,maternal obesity led to a lower level of occludin mRNA expression in BLG-sensitized mice.The mice born to obese mothers exhibited increased mRNA expression levels of GATA-3,interleukin(IL)-4 and IL-10 in jejunum after BLG sensitization,indicating maternal obesity intensified Th2-type biased immune responses.In conclusion,maternal obesity exerted exacerbating effects on the responsiveness of their offspring to cow's milk protein sensitization.展开更多
During the chemotherapy of tumors,the cytotoxic effect of drugs is vital to kill tumor cells,and the delivery of a chemotherapeutic agent is of great importance for optimal therapeutic effects.The high in vivo clearan...During the chemotherapy of tumors,the cytotoxic effect of drugs is vital to kill tumor cells,and the delivery of a chemotherapeutic agent is of great importance for optimal therapeutic effects.The high in vivo clearance rate and low delivery efficiency of conventional chemotherapeutic agents affect the therapeutic effect.In recent years,the responsive drug delivery nanosystem has received increasing concern owing to its excellent biocompatibility,stable delivery performance,and controlled drug release strategies.To lucidly explain the cytocidal and immunotherapeutic effects of such responsive nanosystems in breast cancer,this review discusses the various stimuli and responses of drug-loaded liposomal nanosystems.The light/magnetic response of drug-loaded bionic membranes nanosystems and the heat/magnetic response of drug-loaded iron oxide nanosystems are also elaborated.Their cancer cell-killing efficacy and antitumor immunotherapeutic effects are also scrutinized.展开更多
文摘This paper represents a detailed and systematic review of one of the most ongoing applications of computational fluid dynamics(CFD)in biomedical applications.Beyond its various engineering applications,CFD has started to establish a presence in the biomedical field.Cardiac abnormality,a familiar health issue,is an essential point of investigation by research analysts.Diagnostic modalities provide cardiovascular structural information but give insufficient information about the hemodynamics of blood.The study of hemodynamic parameters can be a potential measure for determining cardiovascular abnormalities.Numerous studies have explored the rheological behavior of blood experimentally and numerically.This paper provides insight into how researchers have incorporated the pulsatile nature of the blood experimentally,numerically,or through various simulations over the years.It focuses on how machine learning platforms derive outputs based on mass and momentum conservation to predict the velocity and pressure profile,analyzing various cardiac diseases for clinical applications.This will pave the way toward responsive AI in cardiac healthcare,improving productivity and quality in the healthcare industry.The paper shows how CFD is a vital tool for efficiently studying the flow in arteries.The review indicates this biomedical simulation and its applications in healthcare using machine learning and AI.Developing AI-based CFD models can impact society and foster the advancement towards responsive AI.
基金supported by the Earmarked Fund for the China Agriculture Research System(CARS-27)the Key Science and Technology Special Projects of Shaanxi Province,China(2020zdzx03-01-02).
文摘Apple replant disease(ARD)has led to severe yield and quality reduction in the apple industry.Fusarium solani(F.solani)has been identified as one of the main microbial pathogens responsible for ARD.Auxin(indole-3-acetic acid,IAA),an endogenous hormone in plants,is involved in almost all plant growth and development processes and plays a role in plant immunity against pathogens.Gretchen Hagen3(GH3)is one of the early/primary auxin response genes.The aim of this study was to evaluate the function of MdGH3-2 and MdGH3-12 in the defense response of F.solani by treating MdGH3-2/12 RNAi plants with F.solani.The results show that under F.solani infection,RNAi of MdGH3-2/12 inhibited plant biomass accumulation and exacerbated root damage.After inoculation with F.solani,MdGH3-2/12 RNAi inhibited the biosynthesis of acid-amido synthetase.This led to the inhibition of free IAA combining with amino acids,resulting in excessive free IAA accumulation.This excessive free IAA altered plant tissue structure,accelerated fungal hyphal invasion,reduced the activity of antioxidant enzymes(SOD,POD and CAT),increased the reactive oxygen species(ROS)level,and reduced total chlorophyll content and photosynthetic ability,while regulating the expression of PR-related genes including PR1,PR4,PR5 and PR8.It also changed the contents of plant hormones and amino acids,and ultimately reduced the resistance to F.solani.In conclusion,these results demonstrate that MdGH3-2 and MdGH3-12 play an important role in apple tolerance to F.solani and ARD.
基金Funded by the National Key R&D Program of China(No.2023YFC2412300)the Natural Science Foundation of Hubei Province(No.2022CFB386)the National Natural Science Foundation of China(No.52073222)。
文摘pH-responsive charge reversal loaded miRNA nanocomposite was prepared by electrostatic self-assembly.The morphology,particle size and zeta potential of the nanocomposites were analyzed by transmission electron microscopy and dynamic light scattering.The synthesis of the polymer was analyzed by^(1)H-NMR.The zeta-potential changes and cellular uptake effects of the nanocomplexes under different pH environments were investigated.The experimental results show that the surface morphology of the nanocomposite is spherical,and the average particle size is about 135 nm.As the pH value of the solution gradually decreases,the surface charge of the nanocomposite reverses from negative charge to positive charge(from-9.4 to+17.1 mV).Cellular uptake mediated by pH-responsive nanocomposite is selective for tumor cells,and the cellular uptake effect in tumor cells at pH 6.5 was approximately 3 times higher than that at pH 7.4.This pH responsive charge reversal nanocomposite has promising application prospects for gene delivery in the weak acid environment of tumors.
基金supported by the Leading Innovation Specialist Support Program of Guangdong Province,the National Natural Science Foundation of China(32370836)the National key Clinical Specialty Construction Project(No.2022YW030009)+3 种基金the GDPH Supporting Fund for Talent Program(KY012021209)the Natural Science Foundation of Guangdong Province(2023A1515110294)the NSFC Incubation Project of Guangdong Provincial People’s Hospital(KY0120220049)the Science and Technology Program of Guangzhou(2023A04J0536).
文摘The precise combination of conflicting biological properties through sophisticated structural and functional design to meet all the requirements of anastomotic healing is of great demand but remains challenging.Here,we develop a smart responsive anastomotic staple(Ti–OH-MC)by integrating porous titanium anastomotic staple with multifunctional polytannic acid/tannic acid coating.This design achieves dynamic sequential regulation of antibacterial,anti-inflammatory,and cell proliferation properties.During the inflammatory phase of the anastomotic stoma,our Ti–OH-MC can release tannic acid to provide antibacterial and anti-inflammatory properties,together with immune microenvironment regulation function.At the same time,as the healing progresses,the multifunctional coating gradually falls off to expose the porous structure of the titanium anastomotic staple,which promotes cell adhesion and proliferation during the later proliferative and remodeling phases.As a result,our Ti–OH-MC exceeds the properties of clinically used titanium anastomotic staple,and can effectively promote the healing.The staple’s preparation strategy is simple and biocompatible,promising for industrialisation and clinical application.This work provides an effective anastomotic staple for anastomotic stoma healing and serve as a reference for the functional design and preparation of other types of titanium-based tissue repair materials.
基金supported by National Key Research and Development Program of China(contract No.2019YFA0904800)National Nature Science Foundation of China(32030065,31722033,92049304 to Y.Z.)+5 种基金Shanghai Sailing Program(contract No.21YF1410300)Science and Technology Commission of Shanghai Municipality(contract No.10DZ2220500)The Shanghai Committee of Science and Technology(grant No.11DZ2260600)Shanghai Frontiers Science Center of Optogenetic Techniques for CellMetabolism(Y.Z.)Research Unit of New Techniques for Live-cell Metabolic Imaging(Chinese Academy of Medical Sciences,2019-I2M-5-013 to Y.Z.)the State Key Laboratory of Bioreactor Engineering,the Fundamental Research Funds for the Central Universities.
文摘Hydrogen sulfide(H_(2)S)is a toxic,essential gas used in various biological and physical processes and has been the subject of many targeted studies on its role as a new gas transmitter.These studies have mainly focused on the production and pharmacological side effects caused by H_(2)S.Therefore,effective strategies to remove H_(2)S has become a key research topic.Furthermore,the development of novel nanoplatforms has provided new tools for the targeted removal of H_(2)S.This paper was performed to review the association between H_(2)S anddisease,relatedH_(2)S inhibitory drugs,aswell as H_(2)S responsive nanoplatforms(HRNs).This review first analyzed the role of H_(2)S in multiple tissues and conditions.Second,common drugs used to eliminate H_(2)S,as well as their potential for combination with anticancer agents,were summarized.Not only the existing studies on HRNs,but also the inhibition H_(2)S combined with different therapeutic methods were both sorted out in this review.Furthermore,this review provided in-depth analysis of the potential of HRNs about treatment or detection in detail.Finally,potential challenges of HRNs were proposed.This study demonstrates the excellent potential of HRNs for biomedical applications.
基金financially supported by National Key Research and Development Program of China (2022YFB3804903, 2022YFB3804900)the National Natural Science Foundation of China (No. 52273052)+2 种基金the Fundamental Research Funds for the Central Universities (No. 2232023Y01)the Program of Shanghai Academic/Technology Research Leader (No. 21XD1420100)the International Cooperation Fund of Science and Technology Commission of Shanghai Municipality (No. 21130750100)。
文摘Nanofiber membranes(NFMs) have become attractive candidates for next-generation flexible transparent materials due to their exceptional flexibility and breathability. However, improving the transmittance of NFMs is a great challenge due to the enormous reflection and incredibly poor transmission generated by the nanofiber-air interface. In this research, we report a general strategy for the preparation of flexible temperature-responsive transparent(TRT) membranes,which achieves a rapid transformation of NFMs from opaque to highly transparent under a narrow temperature window. In this process, the phase change material eicosane is coated on the surface of the polyurethane nanofibers by electrospray technology. When the temperature rises to 37 ℃, eicosane rapidly completes the phase transition and establishes the light transmission path between the nanofibers, preventing light loss from reflection at the nanofiber-air interface. The resulting TRT membrane exhibits high transmittance(> 90%), and fast response(5 s). This study achieves the first TRT transition of NFMs, offering a general strategy for building highly transparent nanofiber materials, shaping the future of next-generation intelligent temperature monitoring, anti-counterfeiting measures, and other high-performance devices.
文摘Demand-responsive transportation(DRT)is a flexible passenger service designed to enhance road efficiency,reduce peak-hour traffic,and boost passenger satisfaction.However,existing optimization methods for initial passenger requests fall short in addressing real-time passenger needs.Consequently,there is a need to develop realtime DRT route optimization methods that integrate both initial and real-time requests.This paper presents a twostage,multi-objective optimization model for DRT vehicle scheduling.The first stage involves an initial scheduling model aimed at minimizing vehicle configuration,and operational,and CO_(2)emission costs while ensuring passenger satisfaction.The second stage develops a real-time scheduling model to minimize additional operational costs,penalties for time window violations,and costs due to rejected passengers,thereby addressing real-time demands.Additionally,an enhanced genetic algorithm based on Non-dominated Sorting Genetic Algorithm-II(NSGA-II)is designed,incorporating multiple crossover points to accelerate convergence and improve solution efficiency.The proposed scheduling model is validated using a real network in Shanghai.Results indicate that realtime scheduling can serve more passengers,and improve vehicle utilization and occupancy rates,with only a minor increase in total operational costs.Compared to the traditional NSGA-II algorithm,the improved version enhances convergence speed by 31.7%and solution speed by 4.8%.The proposed model and algorithm offer both theoretical and practical guidance for real-world DRT scheduling.
基金funded by the National Natural Science Foundation of China(32071515 to S.Z.)Graduate Research and Practice Projects of Minzu University of China(SZKY2024035 to R.Z.)。
文摘Embryonic development is a critical period for phenotype formation.Environmental variation during embryonic development can induce changes in postnatal phenotypes of animals.The thyroxine secretion and aerobic metabolic activity of small birds are important phenotypes closely related to their winter survival.In the context of climate change,it is necessary to determine whether temperature variation during incubation in birds leads to developmental plasticity of these cold responsive phenotypes.We incubated Japanese Quail(Coturnix japonica)eggs at 36.8℃,37.8℃,and 38.8℃,and raised the chicks to 35-day old at 22℃with same raising conditions,then all the quails were exposed to gradually temperature dropping environment(from 15℃to 0℃).After cold treatment,serum T3 level,resting metabolic rate,skeletal muscle and liver metabolomes of the birds were measured.The serum T3 levels were significantly lower in the 38.8℃group and significantly higher in the 36.8℃group compared to the 37.8℃group.The metabolic rate in the 38.8℃group was significantly lower compared to the 37.8℃group.Compared with the 37.8℃group,metabolites involved in the tricarboxylic acid cycle in the liver were significantly lower in the 38.8℃group,and metabolites related to lipid oxidation metabolism and fatty acid biosynthesis were significantly lower in the skeletal muscles in the 38.8℃group but significantly higher in the 36.8℃group.These results indicate that incubation temperature variation can lead to developmental plasticity in cold responsive physiological phenotypes.Higher incubation temperature may impair the capacity of birds coping with cold challenge.
基金Supported by the National Natural Science Foundation of China(No.52073181,No.52273134).
文摘AIM:To investigate the biocompatibility and bacterial adhesion properties of light responsive materials(LRM)and analyze the feasibility and biosafety of employing LRM in the preparation of accommodative intraocular lenses(AIOLs).METHODS:Employing fundamental experimental research techniques,LRM with human lens epithelial cells(hLECs)and human retinal pigment epithelium cells(ARPE-19 cells)were co-cultured.Commercially available intraocular lenses(IOLs)were used as controls to perform cell counting kit-8(CCK-8),cell staining under varying light intensities,cell adhesion and bacterial adhesion experiments.RESULTS:LRM exhibited a stronger inhibitory effect on the proliferation of ARPE19 cells than commercially available IOLs when co-cultured with the undiluted extract for 96h(P<0.05).Under other culturing conditions,the effects on the proliferation of hLECs and ARPE-19 cells were not significantly different between the two materials.Under the influence of light irradiation at intensities of 200 and 300 mW/cm^(2),LRM demonstrated a markedly higher inhibitory effect on the survival of hLECs compared to commercially available IOLs(P<0.0001).They also showed a stronger suppressive effect on the survival rate of ARPE-19 cells,with significant differences observed at 200 mW/cm^(2)(P<0.001)and extremely significant differences at 300 mW/cm^(2)(P<0.0001).Additionally,compared to commercially available IOLs,LRM had a higher number of cells adhering to their surface(P<0.05),as well as a significantly greater number of adherent bacterium(P<0.0001).CONCLUSION:LRM,characterized by their excellent non-contact tunable deformability and low cytotoxicity to ocular tissues,show considerable potential for use in the fabrication of AIOLs.These materials demonstrate strong cell adhesion;however,during photothermal conversion processes involving shape deformation under various light intensities,the resultant temperature rise may harm surrounding cells.These factors suggest that while the material plays a positive role in reducing the incidence of posterior capsule opacification(PCO),it also poses potential risks for retinal damage.Additionally,the strong bacterial adhesion of these materials indicates an increased risk of endophthalmitis.
基金support and funding from the National Natural Science Foundation of China (No.52174047)Sinopec Project (No.P21063-3)。
文摘In the application of polymer gels to profile control and water shutoff,the gelation time will directly determine whether the gel can"go further"in the formation,but the most of the methods for delaying gel gelation time are complicated or have low responsiveness.There is an urgent need for an effective method for delaying gel gelation time with intelligent response.Inspired by the slow-release effect of drug capsules,this paper uses the self-assembly effect of gas-phase hydrophobic SiO_(2) in aqueous solution as a capsule to prepare an intelligent responsive self-assembled micro-nanocapsules.The capsule slowly releases the cross-linking agent under the stimulation of external conditions such as temperature and pH value,thus delaying gel gelation time.When the pH value is 2 and the concentration of gas-phase hydrophobic SiO_(2) particles is 10%,the gelation time of the capsule gel system at 30,60,90,and 120℃is12.5,13.2,15.2,and 21.1 times longer than that of the gel system without containing capsule,respectively.Compared with other methods,the yield stress of the gel without containing capsules was 78 Pa,and the yield stress after the addition of capsules was 322 Pa.The intelligent responsive self-assembled micronanocapsules prepared by gas-phase hydrophobic silica nanoparticles can not only delay the gel gelation time,but also increase the gel strength.The slow release of cross-linking agent from capsule provides an effective method for prolongating the gelation time of polymer gels.
基金Funded by the National Natural Science Foundation of China(No.51873167)the National Innovation and Entrepreneurship Training Program for College Students(No.226801001)。
文摘We developed a fluorescent double network hydrogel with ionic responsiveness and high mechanical properties for visual detection.The nanocomposite hydrogel of laponite and polyacrylamide serves as the first network,while the ionic cross-linked hydrogel of terbium ions and sodium alginate serves as the second network.The double-network structure,the introduction of nanoparticles and the reversible ionic crosslinked interactions confer high mechanical properties to the hydrogel.Terbium ions are not only used as the ionic cross-linked points,but also used as green emitters to endow hydrogels with fluorescent properties.On the basis of the “antenna effect” of terbium ions and the ion exchange interaction,the fluorescence of the hydrogels can make selective responses to various ions(such as organic acid radical ions,transition metal ions) in aqueous solutions,which enables a convenient strategy for visual detection toward ions.Consequently,the fluorescent double network hydrogel fabricated in this study is promising for use in the field of visual sensor detection.
文摘Objective:To evaluate the effect of rosmarinic acid on tracheal smooth muscle responsiveness and lung pathological changes in ovalbumin-sensitized rats.Methods:Rats were randomly divided into six groups:the control group,the asthmatic group,and the asthmatic groups treated with dexamethasone(1 mg/kg;oral gavage)or three doses of rosmarinic acid(0.5,1,and 2 mg/kg;oral gavage).For induction of asthma,rats received intraperitoneal injections and inhalation of ovalbumin.After 21 days,bronchoalveolar lavage fluid and lung samples were collected for histopathological analyses.Moreover,total and differential white blood cell counts were determined.Results:The rosmarinic acid-treated group had significantly lower tracheal smooth muscle responses to methacholine than the asthmatic group.In addition,rosmarinic acid reduced white blood cell count and the percentages of eosinophils,monocytes,and neutrophils while increasing the percentage of lymphocytes.Ovalbumin-induced lung pathological changes were significantly improved by treatment with rosmarinic acid.Conclusions:Rosmarinic acid improves tracheal smooth muscle responsiveness and lung pathological changes in ovalbumin-sensitized rats.
基金National Natural Science Foundation of China,Grant/Award Number:82372145Research Fellow,Grant/Award Number:353146+3 种基金Research Project,Grant/Award Number:347897Solutions for Health Profile,Grant/Award Number:336355InFLAMES Flagship,Grant/Award Number:337531Finland China Food and Health International Pilot project funded by Finnish MInistry of Education and Culture。
文摘The development of tumor drug microcarriers has attracted considerable interest due to their distinctive therapeutic performances.Current attempts tend to elab-orate on the micro/nano-structure design of the microcarriers to achieve multiple drug delivery and spatiotemporal responsive features.Here,the desired hydrogel microspheres are presented with spatiotemporal responsiveness for the treatment of gastric cancer.The microspheres are generated based on inverse opals,their skele-ton is fabricated by biofriendly hyaluronic acid methacrylate(HAMA)and gelatin methacrylate(GelMA),and is thenfilled with a phase-changing hydrogel composed offish gelatin and agarose.Besides,the incorporated black phosphorus quantum dots(BPQDs)within thefilling hydrogel endow the microspheres with outstanding pho-tothermal responsiveness.Two antitumor drugs,sorafenib(SOR)and doxorubicin(DOX),are loaded in the skeleton andfilling hydrogel,respectively.It is found that the drugs show different release profiles upon near-infrared(NIR)irradiation,which exerts distinct performances in a controlled manner.Through both in vitro and in vivo experiments,it is demonstrated that such microspheres can significantly reduce tumor cell viability and enhance the efficiency in treating gastric cancer,indicating a promising stratagem in thefield of drug delivery and tumor therapy.
文摘Background:Given that the formation of eating behaviors in childhood is largely dependent on parental feeding,it is necessary to consider eating behaviors along with feeding behaviors when exploring child nutrition.Responsive feeding can not only promote the development of self-regulation ability,prevent overweight and obesity,and develop healthy dietary behaviors but also enhance the psychosocial ability,cognitive ability,and language ability of infants.it is of great significance for the growth and development of infants to identify whether the feeding behavior of caregivers is responsive feeding as early as possible.Methods:The progress of the literature summarizes the relevant concepts,evaluation tools,and the relationship between responsive feeding and dietary behavior.Results:This is a fact that China lacks the unified response feeding definition and responsive feeding evaluation tools suitable for homes in China.The relationship between responsive feeding and dietary behavior is in the stage of infancy,and systematic response feeding and dietary behavior have not been formed.Conclusion:It is time to pay attention to the dietary behavior of Chinese children.Intervening measures such as promoting the application of responsive feeding should be actively carry out,accordingly,childhood obesity can be prevented.
文摘Inflammatory bowel disease (IBD) is a group of chronic, nonspecific intestinal inflammatory disorders characterized by localized and systemic inflammation. The use of biologic agents in the treatment of IBD patients is widespread, and the occurrence of primary non-responsiveness during treatment is also significant. This review briefly summarizes the possible reasons for primary non-responsiveness in IBD patients, as well as predictive markers and current strategies to address it, providing a theoretical reference for early identification and management of IBD patients who do not respond to treatment.
基金supported by the National Key Research and Development Project(No.2021YFA1201400)National Natural Science Foundation of China(Nos.52073222,51573144 and 21474078)the Fundamental Research Funds for the Central Universities(WUT:2021IVA118 and 2022IVA201).
文摘Micro/nanorobots can propel and navigate in many hard-to-reach biological environments,and thus may bring revolutionary changes to biomedical research and applications.However,current MNRs lack the capability to collectively perceive and report physicochemical changes in unknown microenvironments.Here we propose to develop swarming responsive photonic nanorobots that can map local physicochemical conditions on the fly and further guide localized photothermal treatment.The RPNRs consist of a photonic nanochain of periodically-assembled magnetic Fe_(3)O_(4)nanoparticles encapsulated in a responsive hydrogel shell,and show multiple integrated functions,including energetic magnetically-driven swarming motions,bright stimuli-responsive structural colors,and photothermal conversion.Thus,they can actively navigate in complex environments utilizing their controllable swarming motions,then visualize unknown targets(e.g.,tumor lesion)by collectively mapping out local abnormal physicochemical conditions(e.g.,pH,temperature,or glucose concentra-tion)via their responsive structural colors,and further guide external light irradiation to initiate localized photothermal treatment.This work facilitates the development of intelligent motile nanosensors and versatile multifunctional nanotheranostics for cancer and inflam-matory diseases.
基金sincerely appreciate the financial support from the National Key Research and Development Project(2019YFA0708700)the National Natural Science Foundation of China(51834010,51874261,51874337)+1 种基金the Key Research and Development Program of Shaanxi(2021GY-112)a Discovery Grant from Natural Sciences and Engineering Research Council of Canada(NSERC RGPIN-2017-05080).
文摘The traditional multi-process to enhance tight oil recovery based on fracturing and huff-n-puff has obvious deficiencies,such as low recovery efficiency,rapid production decline,high cost,and complexity,etc.Therefore,a new technology,the so-called fracturing-oil expulsion integration,which does not need flowback after fracturing while making full use of the fracturing energy and gel breaking fluids,are needed to enable efficient exploitation of tight oil.A novel triple-responsive smart fluid based on“pseudo-Gemini”zwitterionic viscoelastic surfactant(VES)consisting of N-erucylamidopropyl-N,N-dimethyl-3-ammonio-2-hydroxy-1-propane-sulfonate(EHSB),N,N,N′,N′-tetramethyl-1,3-propanediamine(TMEDA)and sodium p-toluenesulfonate(NaPts),is developed.Then,the rheology of smart fluid is systematically studied at varying conditions(CO_(2),temperature and pressure).Moreover,the mechanism of triple-response is discussed in detail.Finally,a series of fracturing and spontaneous imbibition performances are systematically investigated.The smart fluid shows excellent CO_(2)-,thermal-,and pressure-triple responsive behavior.It can meet the technical requirement of tight oil fracturing construction at 140°C in the presence of 3.5 MPa CO_(2).The gel breaking fluid shows excellent spontaneous imbibition oil expulsion(∼40%),salt resistance(1.2×104 mg/L Na+),temperature resistance(140°C)and aging stability(30 days).
基金supported by grants from the Fundamental Research Funds for the Central Universities(Nos.2572018B03)the College Students Innovations Special Project funded by NEFU(No.202010225173)+1 种基金the Fundamental Research Funds for the Central Universities(Nos.2572019CT03)the Natural Science Foundation of Heilongjiang Province(No.ZD2019C003)。
文摘Acyl-CoA-binding proteins(ACBPs)are important for the transport of acyl groups for macro molecular biosynthesis involved in plant growth,development,and diverse stress(e.g.,cold,drought,salinity,and heavy metals)responses.Here,we report the phylogeny and characteristics of the ACBP family in the woody plant Populus trichocarpa.Eight genes encoding ACBP proteins were identified,and they are distributed on eight chromosomes in P.trichocarpa.These PtACBP genes were divided into four subgroups according to gene structure,conserved motifs and phylogenetic relationship.Promoter analysis revealed that cis-elements were related to stress response,phytohormone response,and physical and reproductive growth regulation.Expression levels of PtACBP genes varied among different organs,with the highest expression in leaves and the lowest in stems.Quantitative real-time PCR(qRT-PCR)analysis showed that under salinity-alkali stresses(i.e.,200 mM NaCl,75 mM Na2CO3,and 100 mM NaHCO3),four(PtACBP1,PtACBP3,PtACBP4 and PtACBP8)of eight PtACBP genes were significantly induced in roots and leaves.These data provide a comprehensive analysis of the ACBPs family in P.trichocarpa,which could be useful for gene function analyses.
基金supported by the National Key Research and Development Program of China(2019YFC1605000)the Beijing Dairy Industry Innovation Team(BAIC06-2021)。
文摘Food allergy has become a significant public health problem affecting a large number of people worldwide.Maternal obesity causes inflammation and alters the immune system of offspring,which may exacerbate their food allergy.The aim of this study was to determine whether offspring mice born to obese mothers would have more serve reactions to cow's milk protein-induced food allergy,and further investigate the underlying mechanisms.Female offspring BALB/c mice of mothers with normal and high-fat diets were sensitized withβ-lactoglobulin(BLG),respectively.Maternal obesity increased the serum immunoglobulin E and mouse mast cell protease levels,though did not have significant influence on anaphylactic symptom score,core temperature and diarrhea rate of offspring mice after BLG sensitization.Furthermore,maternal obesity led to a lower level of occludin mRNA expression in BLG-sensitized mice.The mice born to obese mothers exhibited increased mRNA expression levels of GATA-3,interleukin(IL)-4 and IL-10 in jejunum after BLG sensitization,indicating maternal obesity intensified Th2-type biased immune responses.In conclusion,maternal obesity exerted exacerbating effects on the responsiveness of their offspring to cow's milk protein sensitization.
基金funded by the Basic Scientific Research Funds of Department of Education of Zhejiang Province(KYQN202103 and KYZD202103)A Project Supported by Scientific Research Fund of Zhejiang Provincial Education Department(Y202249203)+4 种基金General Program of the National Natural Science Foundation of China(61976075 to XX)the Key Research and Development Program of Zhejiang Province(2019C03002 to XX)National Innovation and Entrepreneurship Training Program for College Students(202213023011)Innovation and Entrepreneurship Training Program for College Students of Zhejiang Province(S202213023052)Zhejiang Provincial Natural Science Foundation of China under Grant No.LTGY23H180019.
文摘During the chemotherapy of tumors,the cytotoxic effect of drugs is vital to kill tumor cells,and the delivery of a chemotherapeutic agent is of great importance for optimal therapeutic effects.The high in vivo clearance rate and low delivery efficiency of conventional chemotherapeutic agents affect the therapeutic effect.In recent years,the responsive drug delivery nanosystem has received increasing concern owing to its excellent biocompatibility,stable delivery performance,and controlled drug release strategies.To lucidly explain the cytocidal and immunotherapeutic effects of such responsive nanosystems in breast cancer,this review discusses the various stimuli and responses of drug-loaded liposomal nanosystems.The light/magnetic response of drug-loaded bionic membranes nanosystems and the heat/magnetic response of drug-loaded iron oxide nanosystems are also elaborated.Their cancer cell-killing efficacy and antitumor immunotherapeutic effects are also scrutinized.