In order to facilitate the extraction of the default mode network(DMN), reduce the data complexity of the functional magnetic resonance imaging (fMRI)and overcome the restriction of the linearity of the mixing pro...In order to facilitate the extraction of the default mode network(DMN), reduce the data complexity of the functional magnetic resonance imaging (fMRI)and overcome the restriction of the linearity of the mixing process encountered with the independent component analysis(ICA), a framework of dimensionality reduction and nonlinear transformation is proposed. First, the principal component analysis(PCA)is applied to reduce the time dimension 153 594×128 of the fMRI data to 153 594×5 for simplifying complexity computation and obtaining 95% of the information. Secondly, a new kernel-based nonlinear ICA method referred as the kernel ICA(KICA)based on the Gaussian kernel is introduced to analyze the resting-state fMRI data and extract the DMN. Experimental results show that the KICA provides a better performance for the resting-state fMRI data analysis compared with the classical ICA. Furthermore, the DMN is accurately extracted and the noise is reduced.展开更多
DIVA(Directions Into of Articulators)模型是一种为了生成单词、音节或者音素而控制模拟声道运动的自适应神经网络模型,其依赖的输入信号是从人体大脑中采集到的脑电信号。针对汉语神经分析系统研究中非侵入式脑机接口采集到的脑电数...DIVA(Directions Into of Articulators)模型是一种为了生成单词、音节或者音素而控制模拟声道运动的自适应神经网络模型,其依赖的输入信号是从人体大脑中采集到的脑电信号。针对汉语神经分析系统研究中非侵入式脑机接口采集到的脑电数据存在的分辨率低、干扰大的问题,文中提出一种基于DIVA模型对脑电信号进行约束处理的方法。首先利用独立分量分析方法剔除原始信号中的噪声,提取有效事件相关电位(Event-Related Potentials,ERP)成分;然后以模拟生成的功能性磁共振成像(functional Magnetic Resonance Imaging,fMRI)数据的激活点的空间信息作为限制条件,对提取出的ERP成分进行精确定位。通过对实验数据进行分析处理并模拟受试者的激活脑区,验证了所提方法的正确性和有效性。展开更多
In order to classify the minimal hepatic encephalopathy (MHE) patients from healthy controls, the independent component analysis (ICA) is used to generate the default mode network (DMN) from resting-state functi...In order to classify the minimal hepatic encephalopathy (MHE) patients from healthy controls, the independent component analysis (ICA) is used to generate the default mode network (DMN) from resting-state functional magnetic resonance imaging (fMRI). Then a Bayesian voxel- wised method, graphical-model-based multivariate analysis (GAMMA), is used to explore the associations between abnormal functional integration within DMN and clinical variable. Without any prior knowledge, five machine learning methods, namely, support vector machines (SVMs), classification and regression trees ( CART ), logistic regression, the Bayesian network, and C4.5, are applied to the classification. The functional integration patterns were alternative within DMN, which have the power to predict MHE with an accuracy of 98%. The GAMMA method generating functional integration patterns within DMN can become a simple, objective, and common imaging biomarker for detecting MIIE and can serve as a supplement to the existing diagnostic methods.展开更多
利用功能磁共振成像(fMRI)进行脑功能研究是目前的一个热点,本文以逻辑计算为认知任务,利用fMRI进行数据采集,通过SPM软件分析得到激活脑区,提取感兴趣区(Regions of interest,ROI)的平均BOLD信号(Average-BOLD),并利用主成分分析(Princ...利用功能磁共振成像(fMRI)进行脑功能研究是目前的一个热点,本文以逻辑计算为认知任务,利用fMRI进行数据采集,通过SPM软件分析得到激活脑区,提取感兴趣区(Regions of interest,ROI)的平均BOLD信号(Average-BOLD),并利用主成分分析(Principal component analysis,PCA)方法提取ROI内BOLD信号(PCA-BOLD),通过Average-BOLD、PCA-BOLD信号与实验设计的逻辑任务曲线进行比较,认为PCA-BOLD信号可以更好的作为fMRI激活脑区的定量评估指标,用来衡量ROI激活强度,并进行脑功能基础研究。展开更多
Independent component analysis (ICA) is a newly developed promising technique in signal processing applications. The effective separation and discrimination of functional Magnetic Resonance Imaging (fMRI) signals is a...Independent component analysis (ICA) is a newly developed promising technique in signal processing applications. The effective separation and discrimination of functional Magnetic Resonance Imaging (fMRI) signals is an area of active research and widespread interest. Therefore, the development of an ICA based fMRI data processing method is of obvious value both theoretically and in potential applications. In this paper, analyzed firstly is the drawback of the extant popular ICA-fMRI method where the adopted signal model assumes the independence of spatial distributions of the signals and noise. Then presented is a new fMRI signal model, which assumes the independence of temporal courses of signal and noise in a tiny spatial domain. Consequently we get a novel fMRI data processing method: Neighborhood independent component correlation algorithm. The effectiveness is elucidated through theoretical analysis and simulation tests, and finally a real fMRI data test is presented.展开更多
Abstract A brain network consisting of two key parietal nodes, the precuneus and the posterior cingulate cortex, has emerged from recent fMRI studies. Though it is anatomically adjacent to and spatially overlaps with ...Abstract A brain network consisting of two key parietal nodes, the precuneus and the posterior cingulate cortex, has emerged from recent fMRI studies. Though it is anatomically adjacent to and spatially overlaps with the default mode network (DMN), its function has been associated with memory processing, and it has been referred to as the parietal memory network (PMN). Independent component analysis (ICA) is the most common data-driven method used to extract PMN and DMN simultaneously. However, the effects of data preprocessing and parameter determi- nation in ICA on PMN-DMN segregation are completely unknown. Here, we employ three typical algorithms of group ICA to assess how spatial smoothing and model order influence the degree of PMN-DMN segregation. Our findings indicate that PMN and DMN can only be stably separated using a combination of low-level spatial smoothing and high model order across the three ICA algorithms. We thus argue for more considerations on parametric settings for interpreting DMN data.展开更多
基金Key Academic Discipline during the11th Five-Year Plan Period of Jiangsu Province
文摘In order to facilitate the extraction of the default mode network(DMN), reduce the data complexity of the functional magnetic resonance imaging (fMRI)and overcome the restriction of the linearity of the mixing process encountered with the independent component analysis(ICA), a framework of dimensionality reduction and nonlinear transformation is proposed. First, the principal component analysis(PCA)is applied to reduce the time dimension 153 594×128 of the fMRI data to 153 594×5 for simplifying complexity computation and obtaining 95% of the information. Secondly, a new kernel-based nonlinear ICA method referred as the kernel ICA(KICA)based on the Gaussian kernel is introduced to analyze the resting-state fMRI data and extract the DMN. Experimental results show that the KICA provides a better performance for the resting-state fMRI data analysis compared with the classical ICA. Furthermore, the DMN is accurately extracted and the noise is reduced.
文摘DIVA(Directions Into of Articulators)模型是一种为了生成单词、音节或者音素而控制模拟声道运动的自适应神经网络模型,其依赖的输入信号是从人体大脑中采集到的脑电信号。针对汉语神经分析系统研究中非侵入式脑机接口采集到的脑电数据存在的分辨率低、干扰大的问题,文中提出一种基于DIVA模型对脑电信号进行约束处理的方法。首先利用独立分量分析方法剔除原始信号中的噪声,提取有效事件相关电位(Event-Related Potentials,ERP)成分;然后以模拟生成的功能性磁共振成像(functional Magnetic Resonance Imaging,fMRI)数据的激活点的空间信息作为限制条件,对提取出的ERP成分进行精确定位。通过对实验数据进行分析处理并模拟受试者的激活脑区,验证了所提方法的正确性和有效性。
基金The National Natural Science Foundation of China(No.8123003481271739+2 种基金81501453)the Special Program of Medical Science of Jiangsu Province(No.BL2013029)the Natural Science Foundation of Jiangsu Province(No.BK20141342)
文摘In order to classify the minimal hepatic encephalopathy (MHE) patients from healthy controls, the independent component analysis (ICA) is used to generate the default mode network (DMN) from resting-state functional magnetic resonance imaging (fMRI). Then a Bayesian voxel- wised method, graphical-model-based multivariate analysis (GAMMA), is used to explore the associations between abnormal functional integration within DMN and clinical variable. Without any prior knowledge, five machine learning methods, namely, support vector machines (SVMs), classification and regression trees ( CART ), logistic regression, the Bayesian network, and C4.5, are applied to the classification. The functional integration patterns were alternative within DMN, which have the power to predict MHE with an accuracy of 98%. The GAMMA method generating functional integration patterns within DMN can become a simple, objective, and common imaging biomarker for detecting MIIE and can serve as a supplement to the existing diagnostic methods.
文摘利用功能磁共振成像(fMRI)进行脑功能研究是目前的一个热点,本文以逻辑计算为认知任务,利用fMRI进行数据采集,通过SPM软件分析得到激活脑区,提取感兴趣区(Regions of interest,ROI)的平均BOLD信号(Average-BOLD),并利用主成分分析(Principal component analysis,PCA)方法提取ROI内BOLD信号(PCA-BOLD),通过Average-BOLD、PCA-BOLD信号与实验设计的逻辑任务曲线进行比较,认为PCA-BOLD信号可以更好的作为fMRI激活脑区的定量评估指标,用来衡量ROI激活强度,并进行脑功能基础研究。
基金This work was supported by the National Natural Science Foundation of China (Grant Nos. 39980009,69790080) the 973 Project (Grant No. G1998030503) the Foundation for University Key Teacher by the Ministry of Education, China Sichuan Youth Researche
文摘Independent component analysis (ICA) is a newly developed promising technique in signal processing applications. The effective separation and discrimination of functional Magnetic Resonance Imaging (fMRI) signals is an area of active research and widespread interest. Therefore, the development of an ICA based fMRI data processing method is of obvious value both theoretically and in potential applications. In this paper, analyzed firstly is the drawback of the extant popular ICA-fMRI method where the adopted signal model assumes the independence of spatial distributions of the signals and noise. Then presented is a new fMRI signal model, which assumes the independence of temporal courses of signal and noise in a tiny spatial domain. Consequently we get a novel fMRI data processing method: Neighborhood independent component correlation algorithm. The effectiveness is elucidated through theoretical analysis and simulation tests, and finally a real fMRI data test is presented.
基金supported by the National Basic Research(973)Program(2015CB351702)the National Natural Science Foundation of China(81571756,81270023,81278412,81171409,81000583,81471740,81220108014)+2 种基金Beijing Nova Program(XXJH2015B079 to Z.Y.)the Outstanding Young Investigator Award of Institute of Psychology,Chinese Academy of Sciences(to Z.Y.)the Key Research Program and the Hundred Talents Program of the Chinese Academy of Sciences(KSZD-EW-TZ-002 to X.N.Z)
文摘Abstract A brain network consisting of two key parietal nodes, the precuneus and the posterior cingulate cortex, has emerged from recent fMRI studies. Though it is anatomically adjacent to and spatially overlaps with the default mode network (DMN), its function has been associated with memory processing, and it has been referred to as the parietal memory network (PMN). Independent component analysis (ICA) is the most common data-driven method used to extract PMN and DMN simultaneously. However, the effects of data preprocessing and parameter determi- nation in ICA on PMN-DMN segregation are completely unknown. Here, we employ three typical algorithms of group ICA to assess how spatial smoothing and model order influence the degree of PMN-DMN segregation. Our findings indicate that PMN and DMN can only be stably separated using a combination of low-level spatial smoothing and high model order across the three ICA algorithms. We thus argue for more considerations on parametric settings for interpreting DMN data.