期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Effects of Vegetation Restoration Age on Soil C:N:P Stoichiometry in Yellow River Delta Coastal Wetland of China
1
作者 CAO Qixue WANG Xiaojie +7 位作者 CHU Xiaojing ZHAO Mingliang WANG Lianjing SONG Weimin LI Peiguang ZHANG Xiaoshuai XU Shendong HAN Guangxuan 《Chinese Geographical Science》 SCIE CSCD 2024年第6期1045-1059,共15页
Vegetation restoration can alter carbon(C),nitrogen(N),and phosphorus(P)cycles in coastal wetlands affecting C:N:P stoichiometry.However,the effects of restoration age on soil C:N:P stoichiometry are unclear.In this s... Vegetation restoration can alter carbon(C),nitrogen(N),and phosphorus(P)cycles in coastal wetlands affecting C:N:P stoichiometry.However,the effects of restoration age on soil C:N:P stoichiometry are unclear.In this study,we examined the re-sponses of soil C,N,and P contents and their stoichiometric ratios to vegetation restoration age,focusing on below-ground processes and their relationships to aboveground vegetation community characteristics.We conducted an analysis of temporal gradients based on the'space for time'method to synthesize the effects of restoration age on soil C:N:P stoichiometry in the Yellow River Delta wetland of China.The findings suggest that the combined effects of restoration age and soil depth create complex patterns of shifting soil C:N:P stoichiometry.Specifically,restoration age significantly increased all topsoil C:N:P stoichiometries,except for soil total phosphorus(TP)and the C:N ratio,and slightly affected subsoil C:N:P stoichiometry.The effects of restoration age on the soil C:N ratio was well constrained owing to the coupled relationship between soil organic carbon(SOC)and total nitrogen(TN)contents,while soil TP con-tent was closely related to changes in plant species diversity.Importantly,we found that the topsoil C:N:P stoichiometry was signific-antly affected by plant species diversity,whereas the subsoil C:N:P stoichiometry was more easily regulated by pH and electric con-ductivity(EC).Overall,this study shows that vegetation restoration age elevated SOC and N contents and alleviated N limitation,which is useful for further assessing soil C:N:P stoichiometry in coastal restoration wetlands. 展开更多
关键词 coastal wetland restoration age soil C:N:P stoichiometry soil properties plant species diversity Yellow River Delta of China
下载PDF
Conceptual models of forest dynamics in environmental education and management:keep it as simple as possible,but no simpler 被引量:1
2
作者 Timo Kuuluvainen 《Forest Ecosystems》 SCIE CSCD 2016年第4期311-319,共9页
Background:Conceptual models of forest dynamics are powerful cognitive tools,which are indispensable for communicating ecological ideas and knowledge,and in developing strategic approaches and setting targets for for... Background:Conceptual models of forest dynamics are powerful cognitive tools,which are indispensable for communicating ecological ideas and knowledge,and in developing strategic approaches and setting targets for forest conservation,restoration and sustainable management.Forest development through time is conventionally described as a directional,or "linear",and predictable sequence of stages from "bare ground" to old forest representing the "climax-state".However,this simple view is incompatible with the current knowledge and understanding of intrinsic variability of forest dynamics.Hypothesis:Overly simple conceptual models of forest dynamics easily become transformed into biased mental models of how forests naturally develop and what kind of structures they display.To be able to communicate the essential features and diversity of forest dynamics,comprehensive conceptual models are needed.For this end,Kuuluvainen(2009) suggested a relatively simple conceptual model of forest dynamics,which separates three major modes of forest dynamics,and incorporates state changes and transitions between the forest dynamics modes depending on changes in disturbance regime.Conclusions:Conceptual models of forest dynamics should be comprehensive enough to incorporate both longterm directional change and short-term cyclic forest dynamics,as well as transitions from one dynamics mode to another depending on changes in the driving disturbance regime type.Models that capture such essential features of forest dynamics are indispensable for educational purposes,in setting reference conditions and in developing methods in forest conservation,restoration and ecosystem management. 展开更多
关键词 Natural forest Forest succession Forest disturbance Forest age structure Forest conservation Forest restoration Sustainable management
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部