This article describes the evolution of minimally invasive intervention technologies for vascular restoration therapy from early-stage balloon angioplasty in 1970s,metallic bare metal stent and metallic drug-eluting s...This article describes the evolution of minimally invasive intervention technologies for vascular restoration therapy from early-stage balloon angioplasty in 1970s,metallic bare metal stent and metallic drug-eluting stent technologies in 1990s and 2000s,to bioresorbable vascular scaffold(BVS)technology in large-scale development in recent years.The history,the current stage,the challenges and the future of BVS development are discussed in detail as the best available approach for vascular restoration therapy.The criteria of materials selection,design and processing principles of BVS,and the corresponding clinical trial results are also summarized in this article.展开更多
For decades visual field defects were considered irreversible because it was thought that in the visual system the regeneration potential of the neuronal tissues is low.Nevertheless,there is always some potential for ...For decades visual field defects were considered irreversible because it was thought that in the visual system the regeneration potential of the neuronal tissues is low.Nevertheless,there is always some potential for partial recovery of the visual field defect that can be achieved through induction of neuroplasticity.Neuroplasticity refers to the ability of the brain to change its own functional architecture by modulating synaptic efficacy.It is maintained throughout life and just as neurological rehabilitation can improve motor coordination,visual field defects in glaucoma,diabetic retinopathy or optic neuropathy can be improved by inducing neuroplasticity.In ophthalmology many new treatment paradigms have been tested that can induce neuroplastic changes,including non-invasive alternating current stimulation.Treatment with alternating current stimulation(e.g.,30 minutes,daily for 10 days using transorbital electrodes and^10 Hz)activates the entire retina and parts of the brain.Electroencephalography and functional magnetic resonance imaging studies revealed local activation of the visual cortex,global reorganization of functional brain networks,and enhanced blood flow,which together activate neurons and their networks.The future of low vision is optimistic because vision loss is indeed,partially reversible.展开更多
文摘This article describes the evolution of minimally invasive intervention technologies for vascular restoration therapy from early-stage balloon angioplasty in 1970s,metallic bare metal stent and metallic drug-eluting stent technologies in 1990s and 2000s,to bioresorbable vascular scaffold(BVS)technology in large-scale development in recent years.The history,the current stage,the challenges and the future of BVS development are discussed in detail as the best available approach for vascular restoration therapy.The criteria of materials selection,design and processing principles of BVS,and the corresponding clinical trial results are also summarized in this article.
文摘For decades visual field defects were considered irreversible because it was thought that in the visual system the regeneration potential of the neuronal tissues is low.Nevertheless,there is always some potential for partial recovery of the visual field defect that can be achieved through induction of neuroplasticity.Neuroplasticity refers to the ability of the brain to change its own functional architecture by modulating synaptic efficacy.It is maintained throughout life and just as neurological rehabilitation can improve motor coordination,visual field defects in glaucoma,diabetic retinopathy or optic neuropathy can be improved by inducing neuroplasticity.In ophthalmology many new treatment paradigms have been tested that can induce neuroplastic changes,including non-invasive alternating current stimulation.Treatment with alternating current stimulation(e.g.,30 minutes,daily for 10 days using transorbital electrodes and^10 Hz)activates the entire retina and parts of the brain.Electroencephalography and functional magnetic resonance imaging studies revealed local activation of the visual cortex,global reorganization of functional brain networks,and enhanced blood flow,which together activate neurons and their networks.The future of low vision is optimistic because vision loss is indeed,partially reversible.