Mechanistic studies promote scientific development from phenomena to theories.Aggregation-induced emission(AIE),as an unusual photophysical phenomenon,builds the bridge between molecular science and aggregate mesoscie...Mechanistic studies promote scientific development from phenomena to theories.Aggregation-induced emission(AIE),as an unusual photophysical phenomenon,builds the bridge between molecular science and aggregate mesoscience.With the twenty-year development of AIE,restriction of intramolecular motion(RIM)has been verified as the working mechanism of AIE effect.In this review,these mechanistic works about RIM are summarized from experimental and theoretical perspectives.Thereinto,the experimental studies are introduced from three parts:external rigidification,structural modification and structural characterization.In the theoretical part,calculations on the low-frequency motion of AIEgens have been performed to prove the RIM mechanism.By virtue of the theoretical calculations,some new mechanisms are proposed to supplement the RIM,such as restriction of access to conical intersection,suppression of Kasha transition,restriction of access to dark state,etc.It is foreseeable that the RIM mechanism will unify the photophysical theories for both molecules and aggregates,and inspire more progress in aggregate science.展开更多
The brightness of fluorescent agents directly determines the imaging performance as required.Among various fluorophores,small organic species are promising given its exact purity/composition and excellent processibili...The brightness of fluorescent agents directly determines the imaging performance as required.Among various fluorophores,small organic species are promising given its exact purity/composition and excellent processibility.However,chromophores with planar geometry may suffer from the undesirable aggregation-caused quenching(ACQ)phenomenon.Encouragingly,luminogens showing aggregation-induced emission(AIE)features are preferable as the aggregates which are the most common used state.In this review,we mainly focus on the strategies employed for boosting the brightness of AIE-active luminogens(AIEgens).From molecule to mor-phology levels,approaches that regulate electronic transition processes of the molecule or the packing extent of aggregates in order to confine molecular motion,reduceπ-πstacking,disrupt fluorophore-water interactions,etc.,are presented.In the end,the current challenges and perspectives are briefly discussed.We anticipate that this review will stimulate new insights and more efforts for the advancement of ultrabright AIEgens.展开更多
基金This work is supported by the National Natural Science Foundation of China(No.21788102)the Research Grants of Council of Hong Kong,China(Nos.16304819,16305618,N_HKUST609/19,C6009-17G)the Innovation of Technology Commission of Hong Kong,China(No.ITC-CNERC14SC01).
文摘Mechanistic studies promote scientific development from phenomena to theories.Aggregation-induced emission(AIE),as an unusual photophysical phenomenon,builds the bridge between molecular science and aggregate mesoscience.With the twenty-year development of AIE,restriction of intramolecular motion(RIM)has been verified as the working mechanism of AIE effect.In this review,these mechanistic works about RIM are summarized from experimental and theoretical perspectives.Thereinto,the experimental studies are introduced from three parts:external rigidification,structural modification and structural characterization.In the theoretical part,calculations on the low-frequency motion of AIEgens have been performed to prove the RIM mechanism.By virtue of the theoretical calculations,some new mechanisms are proposed to supplement the RIM,such as restriction of access to conical intersection,suppression of Kasha transition,restriction of access to dark state,etc.It is foreseeable that the RIM mechanism will unify the photophysical theories for both molecules and aggregates,and inspire more progress in aggregate science.
基金supported by the National Natural Science Foundation of China(52122317,22175120)the Developmental Fund for Science and Technology of Shenzhen government(JCYJ20220531101201003,RCYX20200714114525101,JCYJ20190808153415062,JCYJ20190808142403590)the Natural Science Foundation for Distinguished Young Scholars of Guangdong Province(2020B1515020011).
文摘The brightness of fluorescent agents directly determines the imaging performance as required.Among various fluorophores,small organic species are promising given its exact purity/composition and excellent processibility.However,chromophores with planar geometry may suffer from the undesirable aggregation-caused quenching(ACQ)phenomenon.Encouragingly,luminogens showing aggregation-induced emission(AIE)features are preferable as the aggregates which are the most common used state.In this review,we mainly focus on the strategies employed for boosting the brightness of AIE-active luminogens(AIEgens).From molecule to mor-phology levels,approaches that regulate electronic transition processes of the molecule or the packing extent of aggregates in order to confine molecular motion,reduceπ-πstacking,disrupt fluorophore-water interactions,etc.,are presented.In the end,the current challenges and perspectives are briefly discussed.We anticipate that this review will stimulate new insights and more efforts for the advancement of ultrabright AIEgens.