For the further design of the particular gearbox components, the alternating cycles of the respective application mean an often insufficient knowledge of the actual loads occuring in use. Especially for the applicatio...For the further design of the particular gearbox components, the alternating cycles of the respective application mean an often insufficient knowledge of the actual loads occuring in use. Especially for the application within lifting units, such dynamic load cycles are very difficult to pre-estimate. The so-called slack rope test represents the most critical point in the load cycle and provides a special challenge for the gearbox design. Because of this missing expert knowledge, a test bench of such an application is installed and applied to practical movement cycles. Besides the test bench, a multi-body simulation model of the whole system is mapped within the MBS (multi-body simulation) environment SIMPACK. To verify this simulation model, the results are compared with the respective measurements of the test bench. These comparisons show very good agreements. Thus, one of the major advantages of using such simulation tools is the possibility to re-evaluate the internal and external loads during the whole design process. Finally, these simulations serve as a clarification of the load spectrum of the different drivetrain components. Gearbox series or different modifications of the design can now be analyzed prospectively without extensive testing.展开更多
Besides opening geometry, in situ stress and material properties, opening support also has significant effects on stress redistribution around a roadway. To investigate these effects of rock bolts on the stress redist...Besides opening geometry, in situ stress and material properties, opening support also has significant effects on stress redistribution around a roadway. To investigate these effects of rock bolts on the stress redistribution around a roadway, a series of numerical studies were carried out using the finite difference method. Since the stress changes around a roadway caused by rock bolting is small relative to the in situ stress, they cannot obviously be observed in stress contour plots. To overcome this difficulty, a new result processing methodology was developed using the contouring program Surfer. With this methodology, the effects of rock bolts on stress redistribution can obviously be analyzed. Numerical results show that in the three patterns of rock bolts installed in the roof, in the roof and the two lateral sides, and in all the four sides of the rectangular roadway, the maximum stress magnitude of the increase is 0.931 MPa, 2.46 MPa,and 6.5 MPa, respectively; the bolt number of 5 can form an integrated ground arch; the appropriate length and pre-tensioned force of the rock bolt is 2.0 m and 60 k N, respectively. What is more, the ground arch action under the function of rock bolting is able to be effectively examined. The rock bolts dramatically increase the minor principal stress around a roadway which results in significant increase in material strength. Consequently, the major principal stress that the material can carry will greatly increase.With adequate supports, an integrated ground arch which is critical for the stability of roadway will be formed around the roadway.展开更多
HB-MAP (HB-mutual authentication protocol) is a mutual ultra-light-weight authentication protocol we have pro- posed before. In this paper, we present an HB-MAP simulation model. This model is based on the OPNET mod...HB-MAP (HB-mutual authentication protocol) is a mutual ultra-light-weight authentication protocol we have pro- posed before. In this paper, we present an HB-MAP simulation model. This model is based on the OPNET modeler and includes three parts, namely, the network model, the node model, and the process model. The simulation results are obtained mainly in the aspects of running time, queuing delay, throughput, and channel utilization. To show the performance of HB-MAP, simulation of two other protocols HB and LCAP (load-based concurrent access protocol) is also executed, and comparative analysis is carried out on the results. At the end of the paper, we show a simple process of the attacks and identify that the HB-MAP can defend against some attacks.展开更多
In order to examine and analyze the effects of integration of land surface models with TOPMODEL and different approaches for the integration on the model simulation of water and energy balances,the coupled models have...In order to examine and analyze the effects of integration of land surface models with TOPMODEL and different approaches for the integration on the model simulation of water and energy balances,the coupled models have been developed,which incorporate TOPMODEL into the Simplified Biosphere Model(SSiB) with different approaches(one divides a basin into a number of zones according to the distribution of topographic index,and the other only divides the basin into saturated and unsaturated zones).The coupled models are able to(but SSiB is not able to) take into account the impacts of topography variation and vertical heterogeneity of soil saturated hydraulic conductivity on horizontal distribution of soil moisture and in turn on water and energy balances within the basin(or a grid cell).By using the coupled models and SSiB model itself,the daily hydrological components such as runoffs are simulated and final results are analyzed carefully.Simulated daily results of hydrological components produced by both SSiB and coupled models show that(i) There is significant difference between results of soil wetness,its vertical distribution and seasonal variation,water and energy balance,and daily runoff in the basin predicted by SSiB and by the coupled models.The land surface model currently used such as SSiB is likely to misrepresent real feature of water and energy balances in the basin.(ii) Compared with the results for the basin predicted by SSiB,the coupled models predict more strong vertical and seasonal changes in soil wetness,higher evaporation and lower runoff,and improve the base flow simulation obviously.(iii) Comparing the results for the basin predicted by two coupled models with different integration approach and SSiB one by one,the results of daily runoffs and soil wetness predicted by the two coupled models are quite similar.It means,for the coupled models,the approach by dividing a region being considered into more subzones may have limited effects on improving runoff simulation results.The scheme only to divide the region into saturated and unsaturated zones may be a convenient and effective scheme.But then,if the results from the two coupled models for the basin are carefully compared,the simulated results by the coupled model with dividing the basin into more subzones will show higher evaporation and surface runoff but lower subsurface flow,lower total runoff,and lower ground water level averaged for five years.展开更多
In this paper, the Bayes estimator of the error variance is derived in a linear regression model, and the parametric empirical Bayes estimator (PEBE) is constructed. The superiority of the PEBE over the least square...In this paper, the Bayes estimator of the error variance is derived in a linear regression model, and the parametric empirical Bayes estimator (PEBE) is constructed. The superiority of the PEBE over the least squares estimator (LSE) is investigated under the mean square error (MSE) criterion. Finally, some simulation results for the PEBE are obtained.展开更多
A ballastless slab track,which is commonly used in the track structures of heavy-haul railway tunnels,was analysed based on field measurement data of the Fuyingzi Tunnel on the Zhangtang Railway.In accordance with the...A ballastless slab track,which is commonly used in the track structures of heavy-haul railway tunnels,was analysed based on field measurement data of the Fuyingzi Tunnel on the Zhangtang Railway.In accordance with the measured data,the dynamic load thresholds and distributions on the surface and bottom of the ballastless slab track were investigated.A fatigue damage analysis of the ballastless slab track was performed based on the dynamic load time–history curve.The results show that the ballastless slab track can accomplish train load attenuation and reduce the dynamic load from heavy-haul trains by 47.22%from the surface to the bottom.In addition,the distribution at the bottom of the ballastless slab track exhibited a triangular shape,and the dynamic load threshold at the line centre accounted for 78.67%of that at the track position.Meanwhile,the distribution at the surface was saddle-shaped;the dynamic load threshold at the track position accounted for 79.55%of that at the line centre position.The fatigue damage of the ballastless slab track was analysed effectively by combining the measured data and the linear fatigue damage theory.Moreover,the accuracy of the calculation results was verified based on the measured dynamic stress of the ballastless slab track structure.The dynamic action of the train load led to more-concentrated damage to the track bed,and the damage occurred earlier than that in the ordinary line.The axle load was the primary influencing factor of the track bed fatigue damage,and the damage mainly occurred in the track position.These results provide a theoretical basis for performing stress analysis and designing parameters for ballastless slab tracks in heavy-haul railway tunnels.展开更多
A theoretical compensation method for polygonized mesa structures on(100) silicon substrate during the anisotropic etching process has been developed,which contains four stages as follows:prepare the information of...A theoretical compensation method for polygonized mesa structures on(100) silicon substrate during the anisotropic etching process has been developed,which contains four stages as follows:prepare the information of the etching condition;predict the structure's undercutting profile;construct the topological structure of compensation patterns; and generate practical compensation patterns from the topological structure.The reasoning process is clearly stated,and detailed steps for the undercutting prediction and topological structure construction are summarized.Conclusions are also drawn about the rules which must be obeyed during the pattern generation process.The simulation and experimental results of some polygon structures are finally given to prove this method's validity and reliability.展开更多
文摘For the further design of the particular gearbox components, the alternating cycles of the respective application mean an often insufficient knowledge of the actual loads occuring in use. Especially for the application within lifting units, such dynamic load cycles are very difficult to pre-estimate. The so-called slack rope test represents the most critical point in the load cycle and provides a special challenge for the gearbox design. Because of this missing expert knowledge, a test bench of such an application is installed and applied to practical movement cycles. Besides the test bench, a multi-body simulation model of the whole system is mapped within the MBS (multi-body simulation) environment SIMPACK. To verify this simulation model, the results are compared with the respective measurements of the test bench. These comparisons show very good agreements. Thus, one of the major advantages of using such simulation tools is the possibility to re-evaluate the internal and external loads during the whole design process. Finally, these simulations serve as a clarification of the load spectrum of the different drivetrain components. Gearbox series or different modifications of the design can now be analyzed prospectively without extensive testing.
基金Financial support for this work provided by the National Key Scientific Apparatus Development of Special Item (No.2012YQ24012705)is deeply appreciated
文摘Besides opening geometry, in situ stress and material properties, opening support also has significant effects on stress redistribution around a roadway. To investigate these effects of rock bolts on the stress redistribution around a roadway, a series of numerical studies were carried out using the finite difference method. Since the stress changes around a roadway caused by rock bolting is small relative to the in situ stress, they cannot obviously be observed in stress contour plots. To overcome this difficulty, a new result processing methodology was developed using the contouring program Surfer. With this methodology, the effects of rock bolts on stress redistribution can obviously be analyzed. Numerical results show that in the three patterns of rock bolts installed in the roof, in the roof and the two lateral sides, and in all the four sides of the rectangular roadway, the maximum stress magnitude of the increase is 0.931 MPa, 2.46 MPa,and 6.5 MPa, respectively; the bolt number of 5 can form an integrated ground arch; the appropriate length and pre-tensioned force of the rock bolt is 2.0 m and 60 k N, respectively. What is more, the ground arch action under the function of rock bolting is able to be effectively examined. The rock bolts dramatically increase the minor principal stress around a roadway which results in significant increase in material strength. Consequently, the major principal stress that the material can carry will greatly increase.With adequate supports, an integrated ground arch which is critical for the stability of roadway will be formed around the roadway.
基金Supported by the National Nature Science Foundation of China(60902061)the National Key Technology R&D Program (2008BAH28B06-05,2012BAH17F01)+1 种基金the National Culture S&T Promotion Program (WHB1002)the National High Iechnology Research and Development Drogram of China(863 Program) (2012AA011702)
文摘HB-MAP (HB-mutual authentication protocol) is a mutual ultra-light-weight authentication protocol we have pro- posed before. In this paper, we present an HB-MAP simulation model. This model is based on the OPNET modeler and includes three parts, namely, the network model, the node model, and the process model. The simulation results are obtained mainly in the aspects of running time, queuing delay, throughput, and channel utilization. To show the performance of HB-MAP, simulation of two other protocols HB and LCAP (load-based concurrent access protocol) is also executed, and comparative analysis is carried out on the results. At the end of the paper, we show a simple process of the attacks and identify that the HB-MAP can defend against some attacks.
基金supported by National Natural Science Foundation of China(Grant Nos.41075060 and 41030106)
文摘In order to examine and analyze the effects of integration of land surface models with TOPMODEL and different approaches for the integration on the model simulation of water and energy balances,the coupled models have been developed,which incorporate TOPMODEL into the Simplified Biosphere Model(SSiB) with different approaches(one divides a basin into a number of zones according to the distribution of topographic index,and the other only divides the basin into saturated and unsaturated zones).The coupled models are able to(but SSiB is not able to) take into account the impacts of topography variation and vertical heterogeneity of soil saturated hydraulic conductivity on horizontal distribution of soil moisture and in turn on water and energy balances within the basin(or a grid cell).By using the coupled models and SSiB model itself,the daily hydrological components such as runoffs are simulated and final results are analyzed carefully.Simulated daily results of hydrological components produced by both SSiB and coupled models show that(i) There is significant difference between results of soil wetness,its vertical distribution and seasonal variation,water and energy balance,and daily runoff in the basin predicted by SSiB and by the coupled models.The land surface model currently used such as SSiB is likely to misrepresent real feature of water and energy balances in the basin.(ii) Compared with the results for the basin predicted by SSiB,the coupled models predict more strong vertical and seasonal changes in soil wetness,higher evaporation and lower runoff,and improve the base flow simulation obviously.(iii) Comparing the results for the basin predicted by two coupled models with different integration approach and SSiB one by one,the results of daily runoffs and soil wetness predicted by the two coupled models are quite similar.It means,for the coupled models,the approach by dividing a region being considered into more subzones may have limited effects on improving runoff simulation results.The scheme only to divide the region into saturated and unsaturated zones may be a convenient and effective scheme.But then,if the results from the two coupled models for the basin are carefully compared,the simulated results by the coupled model with dividing the basin into more subzones will show higher evaporation and surface runoff but lower subsurface flow,lower total runoff,and lower ground water level averaged for five years.
文摘In this paper, the Bayes estimator of the error variance is derived in a linear regression model, and the parametric empirical Bayes estimator (PEBE) is constructed. The superiority of the PEBE over the least squares estimator (LSE) is investigated under the mean square error (MSE) criterion. Finally, some simulation results for the PEBE are obtained.
基金the Open-end Fund of Key Laboratory of New Technology for Construction of Cities in Mountain Area(LNTCCMA-20210108)the National Natural Science Foundation of China(5108098)+5 种基金the Chongqing Education Commission Science and Technology Research Project(KJQN201901509)the Chongqing Natural Science Fund General Project(cstc2020jcyj-msxmX0904)the Chongqing Talents:Exceptional Young Talents Project(cstc2021ycjhbgzxm0246)the China Postdoctoral Science Foundation-General Project(2021M693739)Chongqing Talents:Exceptional Young Talents Project(cstc2021ycjhbgzxm0246)China Postdoctoral Science Foundation-General Project(2021M693739).
文摘A ballastless slab track,which is commonly used in the track structures of heavy-haul railway tunnels,was analysed based on field measurement data of the Fuyingzi Tunnel on the Zhangtang Railway.In accordance with the measured data,the dynamic load thresholds and distributions on the surface and bottom of the ballastless slab track were investigated.A fatigue damage analysis of the ballastless slab track was performed based on the dynamic load time–history curve.The results show that the ballastless slab track can accomplish train load attenuation and reduce the dynamic load from heavy-haul trains by 47.22%from the surface to the bottom.In addition,the distribution at the bottom of the ballastless slab track exhibited a triangular shape,and the dynamic load threshold at the line centre accounted for 78.67%of that at the track position.Meanwhile,the distribution at the surface was saddle-shaped;the dynamic load threshold at the track position accounted for 79.55%of that at the line centre position.The fatigue damage of the ballastless slab track was analysed effectively by combining the measured data and the linear fatigue damage theory.Moreover,the accuracy of the calculation results was verified based on the measured dynamic stress of the ballastless slab track structure.The dynamic action of the train load led to more-concentrated damage to the track bed,and the damage occurred earlier than that in the ordinary line.The axle load was the primary influencing factor of the track bed fatigue damage,and the damage mainly occurred in the track position.These results provide a theoretical basis for performing stress analysis and designing parameters for ballastless slab tracks in heavy-haul railway tunnels.
文摘A theoretical compensation method for polygonized mesa structures on(100) silicon substrate during the anisotropic etching process has been developed,which contains four stages as follows:prepare the information of the etching condition;predict the structure's undercutting profile;construct the topological structure of compensation patterns; and generate practical compensation patterns from the topological structure.The reasoning process is clearly stated,and detailed steps for the undercutting prediction and topological structure construction are summarized.Conclusions are also drawn about the rules which must be obeyed during the pattern generation process.The simulation and experimental results of some polygon structures are finally given to prove this method's validity and reliability.