The advent of next generation sequencing(NGS) tech-niques has greatly simplified the molecular diagnosis and gene identification in very rare and highly heterogeneous Mendelian disorders. Over the last two years, thes...The advent of next generation sequencing(NGS) tech-niques has greatly simplified the molecular diagnosis and gene identification in very rare and highly heterogeneous Mendelian disorders. Over the last two years, these approaches, especially whole exome sequencing(WES), alone or combined with homozygosity mapping and linkage analysis, have proved to be successful in the identification of more than 25 new causative retinal dystrophy genes. NGS-approaches have also identified a wealth of new mutations in previously reported genes and have provided more comprehensive information concerning the landscape of genotype-phenotype correlations and the genetic complexity/diversity of human control populations. Although whole genome sequencing is far more informative than WES, the functional meaning of the genetic variants identified by the latter can be more easily interpreted, and final diagnosis of inherited retinal dystrophies is extremely successful, reaching 80%, particularly for recessive cases. Even considering the present limitations of WES, the reductions in costs and time, the continual technical improvements, the implementation of refined bioinformatic tools and the unbiased comprehensive genetic information it provides, make WES a very promising diagnostic tool for routine clinical and genetic diagnosis in the future.展开更多
CRISPR/Cas,an adaptive immune system in bacteria,has been adopted as an efficient and precise tool for site-specific gene editing with potential therapeutic opportunities.It has been explored for a variety of applicat...CRISPR/Cas,an adaptive immune system in bacteria,has been adopted as an efficient and precise tool for site-specific gene editing with potential therapeutic opportunities.It has been explored for a variety of applications,including gene modulation,epigenome editing,diagnosis,mRNA editing,etc.It has found applications in retinal dystrophic conditions including progressive cone and cone-rod dystrophies,congenital stationary night blindness,X-linked juvenile retinoschisis,retinitis pigmentosa,age-related macular degeneration,leber’s congenital amaurosis,etc.Most of the therapies for retinal dystrophic conditions work by regressing symptoms instead of reversing the genemutations.CRISPR/Cas9 through indel could impart beneficial effects in the reversal of gene mutations in dystrophic conditions.Recent research has also consolidated on the approaches of using CRISPR systems for retinal dystrophies but their delivery to the posterior part of the eye is a major concern due to high molecular weight,negative charge,and in vivo stability of CRISPR components.Recently,non-viral vectors have gained interest due to their potential in tissue-specific nucleic acid(miRNA/siRNA/CRISPR)delivery.This review highlights the opportunities of retinal dystrophies management using CRISPR/Cas nanomedicine.展开更多
●AIM:To describe the complex,overlapping phenotype of four Chinese patients with inherited retinal dystrophies(IRDs)who harbored two pathogenic genes simultaneously.●METHODS:This retrospective study included 4 patie...●AIM:To describe the complex,overlapping phenotype of four Chinese patients with inherited retinal dystrophies(IRDs)who harbored two pathogenic genes simultaneously.●METHODS:This retrospective study included 4 patients affected with IRDs.Medical and ophthalmic histories were obtained,and clinical examinations were performed.A specific Hereditary Eye Disease Enrichment Panel(HEDEP)based on exome capture technology was used for genetic screening.●RESULTS:Four patients were identified to harbor disease-causing variants in two different genes.Patient retinitis pigmentosa(RP)01-II:1 exhibited both classical ABCA4-induced Stargardt disease(STGD)1 and USH2 Aassociated RP,patient RP02-III:2 exhibited both classical ABCA4-induced STGD1 and CDH23-associated RP,patient RP03-II:1 exhibited both USH2 A-induced autosomal recessive retinitis pigmentosa(arRP)syndrome and SNRNP200-induced autosomal dominant retinitis pigmentosa(adRP),and patient RP04-II:2 exhibited USH2 Ainduced arRP syndrome and EYS-induced arRP at the same time.●CONCLUSION:Our study demonstrates that genotype–phenotype correlations and comprehensive genetic screening is crucial for diagnosing IRDs and helping family planning for patients suffering from the disease.展开更多
Objective To develop a few-shot learning(FSL) approach for classifying optical coherence tomography(OCT) images in patients with inherited retinal disorders(IRDs).Methods In this study, an FSL model based on a student...Objective To develop a few-shot learning(FSL) approach for classifying optical coherence tomography(OCT) images in patients with inherited retinal disorders(IRDs).Methods In this study, an FSL model based on a student–teacher learning framework was designed to classify images. 2,317 images from 189 participants were included. Of these, 1,126 images revealed IRDs, 533 were normal samples, and 658 were control samples.Results The FSL model achieved a total accuracy of 0.974–0.983, total sensitivity of 0.934–0.957, total specificity of 0.984–0.990, and total F1 score of 0.935–0.957, which were superior to the total accuracy of the baseline model of 0.943–0.954, total sensitivity of 0.866–0.886, total specificity of 0.962–0.971,and total F1 score of 0.859–0.885. The performance of most subclassifications also exhibited advantages. Moreover, the FSL model had a higher area under curves(AUC) of the receiver operating characteristic(ROC) curves in most subclassifications.Conclusion This study demonstrates the effective use of the FSL model for the classification of OCT images from patients with IRDs, normal, and control participants with a smaller volume of data. The general principle and similar network architectures can also be applied to other retinal diseases with a low prevalence.展开更多
Inherited retinal diseases(IRD)are a leading cause of blindness in the working age population.The advances in ocular genetics,retinal imaging and molecular biology,have conspired to create the ideal environment for es...Inherited retinal diseases(IRD)are a leading cause of blindness in the working age population.The advances in ocular genetics,retinal imaging and molecular biology,have conspired to create the ideal environment for establishing treatments for IRD,with the first approved gene therapy and the commencement of multiple therapy trials.The scope of this review is to familiarize clinicians and scientists with the current landscape of retinal imaging in IRD.Herein we present in a comprehensive and concise manner the imaging findings of:(I)macular dystrophies(MD)[Stargardt disease(ABCA4),X-linked retinoschisis(RS1),Best disease(BEST1),pattern dystrophy(PRPH2),Sorsby fundus dystrophy(TIMP3),and autosomal dominant drusen(EFEMP1)],(II)cone and cone-rod dystrophies(GUCA1A,PRPH2,ABCA4 and RPGR),(III)cone dysfunction syndromes[achromatopsia(CNGA3,CNGB3,PDE6C,PDE6H,GNAT2,ATF6],blue-cone monochromatism(OPN1LW/OPN1MW array),oligocone trichromacy,bradyopsia(RGS9/R9AP)and Bornholm eye disease(OPN1LW/OPN1MW),(IV)Leber congenital amaurosis(GUCY2D,CEP290,CRB1,RDH12,RPE65,TULP1,AIPL1 and NMNAT1),(V)rod-cone dystrophies[retinitis pigmentosa,enhanced S-Cone syndrome(NR2E3),Bietti crystalline corneoretinal dystrophy(CYP4V2)],(VI)rod dysfunction syndromes(congenital stationary night blindness,fundus albipunctatus(RDH5),Oguchi disease(SAG,GRK1),and(VII)chorioretinal dystrophies[choroideremia(CHM),gyrate atrophy(OAT)].展开更多
AIM:To describe the clinical,electrophysiological,and genetic features of an unusual case with an RDH12 homozygous pathogenic variant and reviewed the characteristics of the patients reported with the same variant.MET...AIM:To describe the clinical,electrophysiological,and genetic features of an unusual case with an RDH12 homozygous pathogenic variant and reviewed the characteristics of the patients reported with the same variant.METHODS:The patient underwent a complete ophthalmologic examination including best-corrected visual acuity,anterior segment and dilated fundus,visual field,spectral-domain optical coherence tomography(OCT)and electroretinogram(ERG).The retinal disease panel genes were sequenced through chip capture high-throughput sequencing and Sanger sequencing was used to confirm the result.Then we reviewed the characteristics of the patients reported with the same variant.RESULTS:A 30-year male presented with severe early retinal degeneration who complained night blindness,decreased visual acuity,vitreous floaters and amaurosis fugax.The best corrected vision was 0.04 OD and 0.12 OS,respectively.The fundus photo and OCT showed bilateral macular atrophy but larger areas of macular atrophy in the left eye.Autofluorescence shows bilateral symmetrical hypo-autofluorescence.ERG revealed that the amplitudes of a-and b-wave were severely decreased.Multifocal ERG showed decreased amplitudes in the local macular area.A homozygous missense variant c.146C>T(chr14:68191267)was found.The clinical characteristics of a total of 13 patients reported with the same pathologic variant varied.CONCLUSION:An unusual patient with a homozygous pathogenic variant in the c.146C>T of RDH12 which causes late-onset and asymmetric retinal degeneration are reported.The clinical manifestations of the patient with multimodal retinal imaging and functional examinations have enriched our understanding of this disease.展开更多
Nanotechnology offers exciting new approaches for biology and medicine. In recent years, nanoparticles,particularly those of the rare metal cerium, are showing potential for a wide range of applications in medicine.Ce...Nanotechnology offers exciting new approaches for biology and medicine. In recent years, nanoparticles,particularly those of the rare metal cerium, are showing potential for a wide range of applications in medicine.Cerium oxide nanoparticles or nanoceria are antioxidants and possess catalytic activities that mimic those of super oxide dismutase and catalase, thereby protecting cellsfrom oxidative stress. The retina is highly susceptible to oxidative stress because of its high oxygen consumption and high metabolic activity associated with exposure to light. Many retinal diseases progress through oxidative stress as a result of a chronic or acute rise in reactive oxygen species. Diseases of the retina are the leading causes of blindness throughout the world. Although some treatments may delay or slow the development of retinal diseases, there are no cures for most forms of blinding diseases. In this review is summarized evidence that cerium oxide nanoparticles can function as catalytic antioxidants in vivo in rodent models of age-related macular degeneration and inherited retinal degeneration and may represent a novel therapeutic strategy for the treatment of human eye diseases. This may shift current research and clinical practice towards the use of nanoceria, alone or in combination with other therapeutics.展开更多
Retinal dystrophies are genetically determined diseases, implying the loss of function of the retina with a wide phenotypic and genotypic variability. There are very few phenotypic, genotypic and epidemiological data ...Retinal dystrophies are genetically determined diseases, implying the loss of function of the retina with a wide phenotypic and genotypic variability. There are very few phenotypic, genotypic and epidemiological data on retinal dystrophies in Latin America. The Objective of this study is to describe the epidemioiogical and clinical characteristics of hereditary retinal and choroidal diseases, in retina practices in Panama. A descriptive study, from 2012 to 2013, was performed in the main retina practices in Panama. All detected patients were given a free appointment to gather their phenotypic characteristics and pedigrees. An incidence of five new cases per year, and an accumulated incidence of 5.35 patients per I0,000 was calculated for the public hospitals. A frequency of 2.7 cases per 1,000 patients was observed in the main retina practices, where 69% had rod-cone dystrophies, 14.3% cone-rod dystrophies, 7.1% Stargardt disease, 4.8% Stargardt-like macular dystrophy and two patients presented other dystrophies. Blindness was the main family antecedent (45.2%). Retinal pigment was present in 59% and strabismus in 21.4% of the patients. Rod-cone and cone-rod dystrophies had similar geographic distribution and the autosomal recessive inheritance pattern was the most frequently observed. This study gives the first phenotypic data of retinal dystrophies in Panama to orient clinicians for a better diagnosis and phenotyping-genotyping correlation for retinal dystrophies in Central America.展开更多
Alteration of the outer retina leads to various diseases such as age-related macular degeneration or retinitis pigmentosa characterized by decreased visual acuity and ultimately blindness.Despite intensive research in...Alteration of the outer retina leads to various diseases such as age-related macular degeneration or retinitis pigmentosa characterized by decreased visual acuity and ultimately blindness.Despite intensive research in the field of retinal disorders,there is currently no curative treatment.Several therapeutic approaches such as cell-based replacement and gene therapies are currently in development.In the context of cell-based therapies,different cell sources such as embryonic stem cells,induced pluripotent stem cells,or multipotent stem cells can be used for transplantation.In the vast majority of human clinical trials,retinal pigment epithelial cells and photoreceptors are the cell types considered for replacement cell therapies.In this review,we summarize the progress made in stem cell therapies ranging from the pre-clinical studies to clinical trials for retinal disease.展开更多
Background:The loss of cell polarity plays a key part in retinal dystrophies such as retinitis pigmentosa(RP)and Leber congenital amaurosis(LCA),resulting in photoreceptor(PR)degeneration and vision loss.Despite not k...Background:The loss of cell polarity plays a key part in retinal dystrophies such as retinitis pigmentosa(RP)and Leber congenital amaurosis(LCA),resulting in photoreceptor(PR)degeneration and vision loss.Despite not knowing the direct genotype-to-phenotype correlation,many disease-causing mutations in the polarity determinant Crumbs(Crb1),have been identified.Indeed,the loss of Crb1 in mice was shown to cause PR death,due to the loss of adhesions between PR and Müller cells at the apical surface of the retina.Unfortunately,although the role of Crb1 in neuron polarity and survival is well established,little is known about how its intracellular trafficking is regulated.With future treatments for retinal degenerative diseases in mind,the goal of this project is to understand the mechanism by which Crb1 is regulated and how it maintains retinal integrity.Previous work in our laboratory showed that Numb,an endocytic adaptor protein,is an important regulator of protein trafficking in retinal cells.We therefore hypothesized that Numb might function as regulator of Crb1 in Müller glia.Methods:To study Numb function in Müller cells,we generated a conditional knockout(cKO)mouse line to inactivate Numb specifically in Müller cells by crossing a Glast-CreERT2 mouse line with a Numb-floxed line.At 30 days,mice were administered tamoxifen to trigger inactivation of Numb and retinas were then collected at time points varying from 2 weeks to 17 months for analysis.Firstly,we studied the retinal morphology and outer limiting membrane integrity by histology and immunohistochemistry.Using electron microscopy(EM),adhesions between Müller glia and photoreceptors were analysed and retinal function was assayed in live mice by electroretinography(ERG).To detect protein expression levels,protein extracts were prepared from cKO and control retinas for immunoblotting.To test for the presence of a biochemical interaction,Hek-293 cells were transfected with Numb and Crb1 vectors,and protein extracts were processed for co-immunoprecipitation.Results:When Numb was deleted in Müller cells,we observed a similar retinal phenotype than what was reported in the Crb1 KO.In 3-month-old animals,we found a disruption of the outer limiting membrane and an ingression of photoreceptor cells in the inner layers of the retina.In older animals(17 months),we observed a clear thinning of the photoreceptor layer and reduced ERG responses.Immunoblotting of retinal lysates revealed that Numb cKO retinas had significantly lower expression of Crb1,suggesting that Numb function in Müller cells is critical to maintain Crb1 levels and thereby outer limiting membrane integrity.Interestingly,we found that Numb can interact with Crb1 both in vitro and in vivo,suggesting that Numb might function as an adaptor protein regulating Crb1 trafficking.Conclusions:Based on these results,we suggest that,in the absence of Numb,Crb1 cannot be trafficked to the apical membrane of Müller cells,and is instead degraded.This ruptures the adhesion between Müller and photoreceptor cells,leading to photoreceptor degeneration.We anticipate that understanding the mechanisms by which Crb1 maintains the structural integrity of the retina will lead to new possibilities for target-based therapies against retinal dystrophies.展开更多
Photoreceptor cell degeneration leads to blindness, for which there is currently no effective treatment. Our previous studies have shown that Lycium barbarum(L. barbarum) polysaccharide(LBP) protects degenerated photo...Photoreceptor cell degeneration leads to blindness, for which there is currently no effective treatment. Our previous studies have shown that Lycium barbarum(L. barbarum) polysaccharide(LBP) protects degenerated photoreceptors in rd1, a transgenic mouse model of retinitis pigmentosa. L. barbarum glycopeptide(Lb GP) is an immunoreactive glycoprotein extracted from LBP. In this study, we investigated the potential protective effect of Lb GP on a chemically induced photoreceptor-degenerative mouse model. Wild-type mice received the following: oral administration of Lb GP as a protective pre-treatment on days 1–7;intraperitoneal administration of 40 mg/kg N-methylN-nitrosourea to induce photoreceptor injury on day 7;and continuation of orally administered Lb GP on days 8–14. Treatment with Lb GP increased photoreceptor survival and improved the structure of photoreceptors, retinal photoresponse, and visual behaviors of mice with photoreceptor degeneration. Lb GP was also found to partially inhibit the activation of microglia in N-methyl-N-nitrosourea-injured retinas and significantly decreased the expression of two pro-inflammatory cytokines. In conclusion, Lb GP effectively slowed the rate of photoreceptor degeneration in N-methyl-N-nitrosourea-injured mice, possibly through an anti-inflammatory mechanism, and has potential as a candidate drug for the clinical treatment of photoreceptor degeneration.展开更多
Inherited retinal dystrophies (IRDs) are major causes of visual impairment and irreversible blindness worldwide, while the precise molecular and genetic mechanisms are still elusive. N6-methyladenosine (m^(6)A) modifi...Inherited retinal dystrophies (IRDs) are major causes of visual impairment and irreversible blindness worldwide, while the precise molecular and genetic mechanisms are still elusive. N6-methyladenosine (m^(6)A) modification is the most prevalent internal modification in eukaryotic mRNA. YTH domain containing 2 (YTHDC2), an m^(6)A reader protein, has recently been identified as a key player in germline development and human cancer. However, its contribution to retinal function remains unknown. Here, we explore the role of YTHDC2 in the visual function of retinal rod photoreceptors by generating rod-specific Ythdc2 knockout mice. Results show that Ythdc2 deficiency in rods causes diminished scotopic ERG responses and progressive retinal degeneration. Multi-omics analysis further identifies Ppef2 and Pde6b as the potential targets of YTHDC2 in the retina. Specifically, via its YTH domain, YTHDC2 recognizes and binds m^(6)A-modified Ppef2 mRNA at the coding sequence and Pde6b mRNA at the 5′-UTR, resulting in enhanced translation efficiency without affecting mRNA levels. Compromised translation efficiency of Ppef2 and Pde6b after YTHDC2 depletion ultimately leads to decreased protein levels in the retina, impaired retinal function, and progressive rod death. Collectively, our finding highlights the importance of YTHDC2 in visual function and photoreceptor survival, which provides an unreported elucidation of IRD pathogenesis via epitranscriptomics.展开更多
基金Supported by Grants SAF2013-49069-C2-1-R(Marfany G and Gonzàlez-Duarte R)BFU2010-15656(Marfany G)(Ministerio de Ciencia e Innovación)+3 种基金SGR2014-0932(Generalitat de Catalunya)CIBERER(U718)Retina Asturias(Gonzàlez-Duarte R)ONCE(Gonzàlez-Duarte R)
文摘The advent of next generation sequencing(NGS) tech-niques has greatly simplified the molecular diagnosis and gene identification in very rare and highly heterogeneous Mendelian disorders. Over the last two years, these approaches, especially whole exome sequencing(WES), alone or combined with homozygosity mapping and linkage analysis, have proved to be successful in the identification of more than 25 new causative retinal dystrophy genes. NGS-approaches have also identified a wealth of new mutations in previously reported genes and have provided more comprehensive information concerning the landscape of genotype-phenotype correlations and the genetic complexity/diversity of human control populations. Although whole genome sequencing is far more informative than WES, the functional meaning of the genetic variants identified by the latter can be more easily interpreted, and final diagnosis of inherited retinal dystrophies is extremely successful, reaching 80%, particularly for recessive cases. Even considering the present limitations of WES, the reductions in costs and time, the continual technical improvements, the implementation of refined bioinformatic tools and the unbiased comprehensive genetic information it provides, make WES a very promising diagnostic tool for routine clinical and genetic diagnosis in the future.
基金the Indian Council of Medical Research (ICMR) for financial support through senior research fellowship (SRF) to DKS (file no. 45/66/2019Nan/BMS)and junior research fellow to MS (file no. 3/1/3/JRF2019/HRD(LS))support from the Department of Biotechnology, Ministry of Science and Technology (DBT), Government of India to DC through project grant (BT/PR26897/NNT/28/1489/2017)
文摘CRISPR/Cas,an adaptive immune system in bacteria,has been adopted as an efficient and precise tool for site-specific gene editing with potential therapeutic opportunities.It has been explored for a variety of applications,including gene modulation,epigenome editing,diagnosis,mRNA editing,etc.It has found applications in retinal dystrophic conditions including progressive cone and cone-rod dystrophies,congenital stationary night blindness,X-linked juvenile retinoschisis,retinitis pigmentosa,age-related macular degeneration,leber’s congenital amaurosis,etc.Most of the therapies for retinal dystrophic conditions work by regressing symptoms instead of reversing the genemutations.CRISPR/Cas9 through indel could impart beneficial effects in the reversal of gene mutations in dystrophic conditions.Recent research has also consolidated on the approaches of using CRISPR systems for retinal dystrophies but their delivery to the posterior part of the eye is a major concern due to high molecular weight,negative charge,and in vivo stability of CRISPR components.Recently,non-viral vectors have gained interest due to their potential in tissue-specific nucleic acid(miRNA/siRNA/CRISPR)delivery.This review highlights the opportunities of retinal dystrophies management using CRISPR/Cas nanomedicine.
基金Supported by the National Natural Science Foundation of China(No.81770966,No.81470666,No.81271046)a Joint Program of Beijing Municipal NaturalScience Foundation(Category B)Beijing Educational committee(No.KZ201510025025).
文摘●AIM:To describe the complex,overlapping phenotype of four Chinese patients with inherited retinal dystrophies(IRDs)who harbored two pathogenic genes simultaneously.●METHODS:This retrospective study included 4 patients affected with IRDs.Medical and ophthalmic histories were obtained,and clinical examinations were performed.A specific Hereditary Eye Disease Enrichment Panel(HEDEP)based on exome capture technology was used for genetic screening.●RESULTS:Four patients were identified to harbor disease-causing variants in two different genes.Patient retinitis pigmentosa(RP)01-II:1 exhibited both classical ABCA4-induced Stargardt disease(STGD)1 and USH2 Aassociated RP,patient RP02-III:2 exhibited both classical ABCA4-induced STGD1 and CDH23-associated RP,patient RP03-II:1 exhibited both USH2 A-induced autosomal recessive retinitis pigmentosa(arRP)syndrome and SNRNP200-induced autosomal dominant retinitis pigmentosa(adRP),and patient RP04-II:2 exhibited USH2 Ainduced arRP syndrome and EYS-induced arRP at the same time.●CONCLUSION:Our study demonstrates that genotype–phenotype correlations and comprehensive genetic screening is crucial for diagnosing IRDs and helping family planning for patients suffering from the disease.
基金supported by National Natural Science Foundation of China [No.82171073]。
文摘Objective To develop a few-shot learning(FSL) approach for classifying optical coherence tomography(OCT) images in patients with inherited retinal disorders(IRDs).Methods In this study, an FSL model based on a student–teacher learning framework was designed to classify images. 2,317 images from 189 participants were included. Of these, 1,126 images revealed IRDs, 533 were normal samples, and 658 were control samples.Results The FSL model achieved a total accuracy of 0.974–0.983, total sensitivity of 0.934–0.957, total specificity of 0.984–0.990, and total F1 score of 0.935–0.957, which were superior to the total accuracy of the baseline model of 0.943–0.954, total sensitivity of 0.866–0.886, total specificity of 0.962–0.971,and total F1 score of 0.859–0.885. The performance of most subclassifications also exhibited advantages. Moreover, the FSL model had a higher area under curves(AUC) of the receiver operating characteristic(ROC) curves in most subclassifications.Conclusion This study demonstrates the effective use of the FSL model for the classification of OCT images from patients with IRDs, normal, and control participants with a smaller volume of data. The general principle and similar network architectures can also be applied to other retinal diseases with a low prevalence.
基金Supported by grants from the National Institute for Health Research Biomedical Research Centre at Moorfields Eye Hospital NHS Foundation Trust and UCL Institute of Ophthalmology,Macular Society(UK),Fight for Sight(UK),Onassis Foundation,Leventis Foundation,The Wellcome Trust(099173/Z/12/Z)Moorfields Eye Hospital Special Trustees,Moorfields Eye Charity,Retina UK,and the Foundation Fighting Blindness(USA).
文摘Inherited retinal diseases(IRD)are a leading cause of blindness in the working age population.The advances in ocular genetics,retinal imaging and molecular biology,have conspired to create the ideal environment for establishing treatments for IRD,with the first approved gene therapy and the commencement of multiple therapy trials.The scope of this review is to familiarize clinicians and scientists with the current landscape of retinal imaging in IRD.Herein we present in a comprehensive and concise manner the imaging findings of:(I)macular dystrophies(MD)[Stargardt disease(ABCA4),X-linked retinoschisis(RS1),Best disease(BEST1),pattern dystrophy(PRPH2),Sorsby fundus dystrophy(TIMP3),and autosomal dominant drusen(EFEMP1)],(II)cone and cone-rod dystrophies(GUCA1A,PRPH2,ABCA4 and RPGR),(III)cone dysfunction syndromes[achromatopsia(CNGA3,CNGB3,PDE6C,PDE6H,GNAT2,ATF6],blue-cone monochromatism(OPN1LW/OPN1MW array),oligocone trichromacy,bradyopsia(RGS9/R9AP)and Bornholm eye disease(OPN1LW/OPN1MW),(IV)Leber congenital amaurosis(GUCY2D,CEP290,CRB1,RDH12,RPE65,TULP1,AIPL1 and NMNAT1),(V)rod-cone dystrophies[retinitis pigmentosa,enhanced S-Cone syndrome(NR2E3),Bietti crystalline corneoretinal dystrophy(CYP4V2)],(VI)rod dysfunction syndromes(congenital stationary night blindness,fundus albipunctatus(RDH5),Oguchi disease(SAG,GRK1),and(VII)chorioretinal dystrophies[choroideremia(CHM),gyrate atrophy(OAT)].
基金Supported by Shenzhen Science and Technology Program,Shenzhen,China(No.JCYJ20200109145001814,No.SGDX20211123120001001)the National Natural Science Foundation of China(No.81970790)Sanming Project of Medicine in Shenzhen(No.SZSM202011015).
文摘AIM:To describe the clinical,electrophysiological,and genetic features of an unusual case with an RDH12 homozygous pathogenic variant and reviewed the characteristics of the patients reported with the same variant.METHODS:The patient underwent a complete ophthalmologic examination including best-corrected visual acuity,anterior segment and dilated fundus,visual field,spectral-domain optical coherence tomography(OCT)and electroretinogram(ERG).The retinal disease panel genes were sequenced through chip capture high-throughput sequencing and Sanger sequencing was used to confirm the result.Then we reviewed the characteristics of the patients reported with the same variant.RESULTS:A 30-year male presented with severe early retinal degeneration who complained night blindness,decreased visual acuity,vitreous floaters and amaurosis fugax.The best corrected vision was 0.04 OD and 0.12 OS,respectively.The fundus photo and OCT showed bilateral macular atrophy but larger areas of macular atrophy in the left eye.Autofluorescence shows bilateral symmetrical hypo-autofluorescence.ERG revealed that the amplitudes of a-and b-wave were severely decreased.Multifocal ERG showed decreased amplitudes in the local macular area.A homozygous missense variant c.146C>T(chr14:68191267)was found.The clinical characteristics of a total of 13 patients reported with the same pathologic variant varied.CONCLUSION:An unusual patient with a homozygous pathogenic variant in the c.146C>T of RDH12 which causes late-onset and asymmetric retinal degeneration are reported.The clinical manifestations of the patient with multimodal retinal imaging and functional examinations have enriched our understanding of this disease.
基金Supported by NIH NEI,No.R21EY018306,R01EY18724,R01EY022111National Science Foundation,No.CBET-0708172
文摘Nanotechnology offers exciting new approaches for biology and medicine. In recent years, nanoparticles,particularly those of the rare metal cerium, are showing potential for a wide range of applications in medicine.Cerium oxide nanoparticles or nanoceria are antioxidants and possess catalytic activities that mimic those of super oxide dismutase and catalase, thereby protecting cellsfrom oxidative stress. The retina is highly susceptible to oxidative stress because of its high oxygen consumption and high metabolic activity associated with exposure to light. Many retinal diseases progress through oxidative stress as a result of a chronic or acute rise in reactive oxygen species. Diseases of the retina are the leading causes of blindness throughout the world. Although some treatments may delay or slow the development of retinal diseases, there are no cures for most forms of blinding diseases. In this review is summarized evidence that cerium oxide nanoparticles can function as catalytic antioxidants in vivo in rodent models of age-related macular degeneration and inherited retinal degeneration and may represent a novel therapeutic strategy for the treatment of human eye diseases. This may shift current research and clinical practice towards the use of nanoceria, alone or in combination with other therapeutics.
文摘Retinal dystrophies are genetically determined diseases, implying the loss of function of the retina with a wide phenotypic and genotypic variability. There are very few phenotypic, genotypic and epidemiological data on retinal dystrophies in Latin America. The Objective of this study is to describe the epidemioiogical and clinical characteristics of hereditary retinal and choroidal diseases, in retina practices in Panama. A descriptive study, from 2012 to 2013, was performed in the main retina practices in Panama. All detected patients were given a free appointment to gather their phenotypic characteristics and pedigrees. An incidence of five new cases per year, and an accumulated incidence of 5.35 patients per I0,000 was calculated for the public hospitals. A frequency of 2.7 cases per 1,000 patients was observed in the main retina practices, where 69% had rod-cone dystrophies, 14.3% cone-rod dystrophies, 7.1% Stargardt disease, 4.8% Stargardt-like macular dystrophy and two patients presented other dystrophies. Blindness was the main family antecedent (45.2%). Retinal pigment was present in 59% and strabismus in 21.4% of the patients. Rod-cone and cone-rod dystrophies had similar geographic distribution and the autosomal recessive inheritance pattern was the most frequently observed. This study gives the first phenotypic data of retinal dystrophies in Panama to orient clinicians for a better diagnosis and phenotyping-genotyping correlation for retinal dystrophies in Central America.
文摘Alteration of the outer retina leads to various diseases such as age-related macular degeneration or retinitis pigmentosa characterized by decreased visual acuity and ultimately blindness.Despite intensive research in the field of retinal disorders,there is currently no curative treatment.Several therapeutic approaches such as cell-based replacement and gene therapies are currently in development.In the context of cell-based therapies,different cell sources such as embryonic stem cells,induced pluripotent stem cells,or multipotent stem cells can be used for transplantation.In the vast majority of human clinical trials,retinal pigment epithelial cells and photoreceptors are the cell types considered for replacement cell therapies.In this review,we summarize the progress made in stem cell therapies ranging from the pre-clinical studies to clinical trials for retinal disease.
文摘Background:The loss of cell polarity plays a key part in retinal dystrophies such as retinitis pigmentosa(RP)and Leber congenital amaurosis(LCA),resulting in photoreceptor(PR)degeneration and vision loss.Despite not knowing the direct genotype-to-phenotype correlation,many disease-causing mutations in the polarity determinant Crumbs(Crb1),have been identified.Indeed,the loss of Crb1 in mice was shown to cause PR death,due to the loss of adhesions between PR and Müller cells at the apical surface of the retina.Unfortunately,although the role of Crb1 in neuron polarity and survival is well established,little is known about how its intracellular trafficking is regulated.With future treatments for retinal degenerative diseases in mind,the goal of this project is to understand the mechanism by which Crb1 is regulated and how it maintains retinal integrity.Previous work in our laboratory showed that Numb,an endocytic adaptor protein,is an important regulator of protein trafficking in retinal cells.We therefore hypothesized that Numb might function as regulator of Crb1 in Müller glia.Methods:To study Numb function in Müller cells,we generated a conditional knockout(cKO)mouse line to inactivate Numb specifically in Müller cells by crossing a Glast-CreERT2 mouse line with a Numb-floxed line.At 30 days,mice were administered tamoxifen to trigger inactivation of Numb and retinas were then collected at time points varying from 2 weeks to 17 months for analysis.Firstly,we studied the retinal morphology and outer limiting membrane integrity by histology and immunohistochemistry.Using electron microscopy(EM),adhesions between Müller glia and photoreceptors were analysed and retinal function was assayed in live mice by electroretinography(ERG).To detect protein expression levels,protein extracts were prepared from cKO and control retinas for immunoblotting.To test for the presence of a biochemical interaction,Hek-293 cells were transfected with Numb and Crb1 vectors,and protein extracts were processed for co-immunoprecipitation.Results:When Numb was deleted in Müller cells,we observed a similar retinal phenotype than what was reported in the Crb1 KO.In 3-month-old animals,we found a disruption of the outer limiting membrane and an ingression of photoreceptor cells in the inner layers of the retina.In older animals(17 months),we observed a clear thinning of the photoreceptor layer and reduced ERG responses.Immunoblotting of retinal lysates revealed that Numb cKO retinas had significantly lower expression of Crb1,suggesting that Numb function in Müller cells is critical to maintain Crb1 levels and thereby outer limiting membrane integrity.Interestingly,we found that Numb can interact with Crb1 both in vitro and in vivo,suggesting that Numb might function as an adaptor protein regulating Crb1 trafficking.Conclusions:Based on these results,we suggest that,in the absence of Numb,Crb1 cannot be trafficked to the apical membrane of Müller cells,and is instead degraded.This ruptures the adhesion between Müller and photoreceptor cells,leading to photoreceptor degeneration.We anticipate that understanding the mechanisms by which Crb1 maintains the structural integrity of the retina will lead to new possibilities for target-based therapies against retinal dystrophies.
基金supported by Guangzhou Key Projects of Brain Science and Brain-Like Intelligence Technology,No.20200730009 (to YX)the National Natural Science Foundation of China,No.82074169 (to XM)+2 种基金the Guangdong Basic and Applied Basic Research Foundation,No.2021A1515012473 (to XM)Project of Administration of Traditional Chinese Medicine of Guangdong Province,No.20202045 (to XM)Aier Eye Hospital Group,No.AF2019001 (to ST,KFS,YX,XM)。
文摘Photoreceptor cell degeneration leads to blindness, for which there is currently no effective treatment. Our previous studies have shown that Lycium barbarum(L. barbarum) polysaccharide(LBP) protects degenerated photoreceptors in rd1, a transgenic mouse model of retinitis pigmentosa. L. barbarum glycopeptide(Lb GP) is an immunoreactive glycoprotein extracted from LBP. In this study, we investigated the potential protective effect of Lb GP on a chemically induced photoreceptor-degenerative mouse model. Wild-type mice received the following: oral administration of Lb GP as a protective pre-treatment on days 1–7;intraperitoneal administration of 40 mg/kg N-methylN-nitrosourea to induce photoreceptor injury on day 7;and continuation of orally administered Lb GP on days 8–14. Treatment with Lb GP increased photoreceptor survival and improved the structure of photoreceptors, retinal photoresponse, and visual behaviors of mice with photoreceptor degeneration. Lb GP was also found to partially inhibit the activation of microglia in N-methyl-N-nitrosourea-injured retinas and significantly decreased the expression of two pro-inflammatory cytokines. In conclusion, Lb GP effectively slowed the rate of photoreceptor degeneration in N-methyl-N-nitrosourea-injured mice, possibly through an anti-inflammatory mechanism, and has potential as a candidate drug for the clinical treatment of photoreceptor degeneration.
基金supported by the National Natural Science Foundation of China(81970841,82101160,82121003)the Department of Science and Technology of Sichuan Province(2023ZYD0172,2023YFS0161)+3 种基金the program of Science and Technology International Cooperation Project of Qinghai province(China)(No.2022-HZ-814)Sichuan Intellectual Property Office(China)(No.2022-ZS-0070)the CAMS Innovation Fund for Medical Sciences(2019-12M-5-032)Open Project of Henan Provincial Key Laboratory of Ophthalmology and Visual Science(20KFKT02).
文摘Inherited retinal dystrophies (IRDs) are major causes of visual impairment and irreversible blindness worldwide, while the precise molecular and genetic mechanisms are still elusive. N6-methyladenosine (m^(6)A) modification is the most prevalent internal modification in eukaryotic mRNA. YTH domain containing 2 (YTHDC2), an m^(6)A reader protein, has recently been identified as a key player in germline development and human cancer. However, its contribution to retinal function remains unknown. Here, we explore the role of YTHDC2 in the visual function of retinal rod photoreceptors by generating rod-specific Ythdc2 knockout mice. Results show that Ythdc2 deficiency in rods causes diminished scotopic ERG responses and progressive retinal degeneration. Multi-omics analysis further identifies Ppef2 and Pde6b as the potential targets of YTHDC2 in the retina. Specifically, via its YTH domain, YTHDC2 recognizes and binds m^(6)A-modified Ppef2 mRNA at the coding sequence and Pde6b mRNA at the 5′-UTR, resulting in enhanced translation efficiency without affecting mRNA levels. Compromised translation efficiency of Ppef2 and Pde6b after YTHDC2 depletion ultimately leads to decreased protein levels in the retina, impaired retinal function, and progressive rod death. Collectively, our finding highlights the importance of YTHDC2 in visual function and photoreceptor survival, which provides an unreported elucidation of IRD pathogenesis via epitranscriptomics.