Objective: To investigate the impact of the extracts of Gac fruit parts(peel, pulp, seed, and aril) on the cell viability and angiogenesis markers of human retinal pigment epithelial(ARPE-19) cells under high glucose ...Objective: To investigate the impact of the extracts of Gac fruit parts(peel, pulp, seed, and aril) on the cell viability and angiogenesis markers of human retinal pigment epithelial(ARPE-19) cells under high glucose conditions. Methods: The effect of the extracts of Gac fruit peel, pulp, seed and aril on the ARPE-19 cells was determined using MTT viability assay, Trypan blue dye and morphological changes were observed using light microscopy. Enzyme-linked immunosorbent-based assay was performed to evaluate the effect of Gac fruit parts on the reactive oxygen species(ROS), vascular endothelial growth factor(VEGF) and pigmented epithelium-derived factor(PEDF) secretions. Results: High glucose(HG) at 30 mmol/L increased ARPE-19 cell viability and ROS and VEGF secretions. While, the exposure of ARPE-19 cells in high glucose condition to Gac fruit extracts led to inhibition of cell viability, induced morphological changes, decreased ROS and VEGF secretions, and increased PEDF level. Gac pulp, seed, and aril at 1 000 μg/mL showed significant inhibition activities [(7.5 ± 5.1)%,(2.7 ± 0.5)%,(3.2 ± 1.1)%, respectively] against HG-induced ARPE-19 cell viability. The findings also demonstrated that Gac aril at 250 μg/mL significantly decreased ROS and VEGF levels [(40.6 ± 3.3) pg/mL,(107.4 ± 48.3) pg/mL, respectively] compared to ROS [(71.7 ± 2.9) pg/mL ] and VEGF [(606.9 ± 81.1) pg/mL] in HG untreated cells. Moreover, 250 μg/mL of Gac peel dramatically increased PEDF level [(18.2 ± 0.3) ng/mL] compared to that in HG untreated cells [(0.48 ± 0.39) ng/mL]. Conclusions: This study indicates that the extracts of Gac peel, pulp, seed and aril reduced cell viability, minimized ROS generations and showed angiogenic activities. Therefore, our findings open new insights into the potentiality of Gac fruit against HG-related diabetic retinopathy disease.展开更多
AIM:To determine whether the microRNA-27b-3p(miR-27b-3p)/NF-E2-related factor 2(Nrf2)pathway plays a role in human retinal pigment epithelial(hRPE)cell response to high glucose,how miR-27b-3p and Nrf2 expression are r...AIM:To determine whether the microRNA-27b-3p(miR-27b-3p)/NF-E2-related factor 2(Nrf2)pathway plays a role in human retinal pigment epithelial(hRPE)cell response to high glucose,how miR-27b-3p and Nrf2 expression are regulated,and whether this pathway could be specifically targeted.METHODS:hRPE cells were cultured in normal glucose or high glucose for 1,3,or 6d before measuring cellular proliferation rates using cell counting kit-8 and reactive oxygen species(ROS)levels using a dihydroethidium kit.miR-27b-3p,Nrf2,NAD(P)H quinone oxidoreductase 1(NQO1)and heme oxygenase-1(HO-1)mRNA and protein levels were analyzed using reverse transcription quantitative polymerase chain reaction(RT-qPCR)and immunocytofluorescence(ICF),respectively.Western blot analyses were performed to determine nuclear and total Nrf2 protein levels.Nrf2,NQO1,and HO-1 expression levels by RT-qPCR,ICF,or Western blot were further tested after miR-27b-3p overexpression or inhibitor lentiviral transfection.Finally,the expression level of those target genes was analyzed after treating hRPE cells with pyridoxamine.RESULTS:Persistent exposure to high glucose gradually suppressed hRPE Nrf2,NQO1,and HO-1 mRNA and protein levels and increased miR-27b-3p mRNA levels.High glucose also promoted ROS release and inhibited cellular proliferation.Nrf2,NQO1,and HO-1 mRNA levels decreased after miR-27b-3p overexpression and,conversely,both mRNA and protein levels increased after expressing a miR-27b-3p inhibitor.After treating hRPE cells exposed to high glucose with pyridoxamine,ROS levels tended to decreased,proliferation rate increased,Nrf2,NQO1,and HO-1 mRNA and protein levels were upregulated,and miR-27b-3p mRNA levels were suppressed.CONCLUSION:Nrf2 is a downstream target of miR-27b-3p.Furthermore,the miR-27b-3p inhibitor pyridoxamine can alleviate high glucose injury by regulating the miR-27b-3p/Nrf2 axis.展开更多
Objective:To study the effects of Lycium barbarum polysaccharide(LBP)on the proliferation,apoptosis,and autophagy of retinal pigment epithelial(RPE)cells cultured under high-glucose conditions.Methods:The ARPE-19 cell...Objective:To study the effects of Lycium barbarum polysaccharide(LBP)on the proliferation,apoptosis,and autophagy of retinal pigment epithelial(RPE)cells cultured under high-glucose conditions.Methods:The ARPE-19 cell line was randomly divided into a control group(normally cultured in Dulbecco's Modified Eagle Medium/Nutrient Mixture F-12[DMEM/F-12]medium),a high-glucose group(HG;50 mmol/L glucose added to DMEM/F-12 medium),and a HG+LBP group(incubated in DMEM/F-12 medium containing 1 mg/mL LBP for 24 h,and then treated with 50 mmol/L glucose for 24 h).Following Ad-mCherry-GFP-LC3B infection,cell proliferation,apoptosis,mammalian target of rapamy-cin(mTOR)expression,and autophagic flux were determined by Cell Counting Kit-8(CCK-8),AnnexinV-APC/7-AAD Apoptosis Detection Kit,Western blot,and laser confocal microscopy,respectively.Results:The proliferation rate of ARPE-19 cells in the HG group was significantly lower than that in the control group(P<0.05),while the proliferation rate of ARPE-19 cells in the HG+LBP group was significantly higher than that in the HG group(P<0.05).The apoptosis rate of ARPE-19 cells in the HG group was significantly higher than that in the control group(P<0.05),while the apoptosis rate of ARPE-19 cells in the HG+LBP group was significantly lower than that in the HG group(P<0.05).The relative expression of phosphorylated mTOR(p-mTOR)of ARPE-19 cells in the HG group was significantly lower than that in the control group(P<0.05),with enhanced autophagic flux;when compared with the HG group,the HG+LBP group had significantly higher expression of p-mTOR(P<0.05),with diminished autophagic flux.Conclusion:LBP has a protective effect on RPE cells with high glucose-induced injury,and its mechanism may be related to LBP inhibition of high glucose-induced abnormal autophagy.展开更多
AIM:To evaluate the effects of LIN28A(human)on high glucose-induced retinal pigmented epithelium(RPE)cell injury and its possible mechanism.METHODS:Diabetic retinopathy model was generated following 48h of exposure to...AIM:To evaluate the effects of LIN28A(human)on high glucose-induced retinal pigmented epithelium(RPE)cell injury and its possible mechanism.METHODS:Diabetic retinopathy model was generated following 48h of exposure to 30 mmol/L high glucose(HG)in ARPE-19 cells.Quantitative real-time polymerase chain reaction(qRT-PCR)and Western blot tested the expression of the corresponding genes and proteins.Cell viability as well as apoptosis was determined through cell counting kit-8(CCK-8)and flow cytometry assays.Immunofluorescence assay was adopted to evaluate autophagy activity.Caspase 3 activity,oxidative stress markers,and cytokines were appraised adopting their commercial kits,respectively.Finally,ARPE-19 cells were preincubated with EX527,a Sirtuin 1(SIRT1)inhibitor,prior to HG stimulation to validate the regulatory mechanism.RESULTS:LIN28A was downregulated in HG-challenged ARPE-19 cells.LIN28A overexpression greatly inhibited HGinduced ARPE-19 cell viability loss,apoptosis,oxidative damage as well as inflammatory response.Meanwhile,the repressed autophagy and SIRT1 in ARPE-19 cells challenged with HG were elevated after LIN28A overexpression.In addition,treatment of EX527 greatly inhibited the activated autophagy following LIN28A overexpression and partly abolished the protective role of LIN28A against HG-elicited apoptosis,oxidative damage as well as inflammation in ARPE-19 cells.CONCLUSION:LIN28A exerts a protective role against HG-elicited RPE oxidative damage,inflammation,as well as apoptosis via regulating SIRT1/autophagy.展开更多
基金supported by Research Grant Number:UPM,GPIPS/2017/7956600
文摘Objective: To investigate the impact of the extracts of Gac fruit parts(peel, pulp, seed, and aril) on the cell viability and angiogenesis markers of human retinal pigment epithelial(ARPE-19) cells under high glucose conditions. Methods: The effect of the extracts of Gac fruit peel, pulp, seed and aril on the ARPE-19 cells was determined using MTT viability assay, Trypan blue dye and morphological changes were observed using light microscopy. Enzyme-linked immunosorbent-based assay was performed to evaluate the effect of Gac fruit parts on the reactive oxygen species(ROS), vascular endothelial growth factor(VEGF) and pigmented epithelium-derived factor(PEDF) secretions. Results: High glucose(HG) at 30 mmol/L increased ARPE-19 cell viability and ROS and VEGF secretions. While, the exposure of ARPE-19 cells in high glucose condition to Gac fruit extracts led to inhibition of cell viability, induced morphological changes, decreased ROS and VEGF secretions, and increased PEDF level. Gac pulp, seed, and aril at 1 000 μg/mL showed significant inhibition activities [(7.5 ± 5.1)%,(2.7 ± 0.5)%,(3.2 ± 1.1)%, respectively] against HG-induced ARPE-19 cell viability. The findings also demonstrated that Gac aril at 250 μg/mL significantly decreased ROS and VEGF levels [(40.6 ± 3.3) pg/mL,(107.4 ± 48.3) pg/mL, respectively] compared to ROS [(71.7 ± 2.9) pg/mL ] and VEGF [(606.9 ± 81.1) pg/mL] in HG untreated cells. Moreover, 250 μg/mL of Gac peel dramatically increased PEDF level [(18.2 ± 0.3) ng/mL] compared to that in HG untreated cells [(0.48 ± 0.39) ng/mL]. Conclusions: This study indicates that the extracts of Gac peel, pulp, seed and aril reduced cell viability, minimized ROS generations and showed angiogenic activities. Therefore, our findings open new insights into the potentiality of Gac fruit against HG-related diabetic retinopathy disease.
基金Supported by National Natural Science Foundation of China(No.2020J01652)the Training Project for Young and Middleaged Core Talents in Health System of Fujian Province(No.2016-ZQN-62).
文摘AIM:To determine whether the microRNA-27b-3p(miR-27b-3p)/NF-E2-related factor 2(Nrf2)pathway plays a role in human retinal pigment epithelial(hRPE)cell response to high glucose,how miR-27b-3p and Nrf2 expression are regulated,and whether this pathway could be specifically targeted.METHODS:hRPE cells were cultured in normal glucose or high glucose for 1,3,or 6d before measuring cellular proliferation rates using cell counting kit-8 and reactive oxygen species(ROS)levels using a dihydroethidium kit.miR-27b-3p,Nrf2,NAD(P)H quinone oxidoreductase 1(NQO1)and heme oxygenase-1(HO-1)mRNA and protein levels were analyzed using reverse transcription quantitative polymerase chain reaction(RT-qPCR)and immunocytofluorescence(ICF),respectively.Western blot analyses were performed to determine nuclear and total Nrf2 protein levels.Nrf2,NQO1,and HO-1 expression levels by RT-qPCR,ICF,or Western blot were further tested after miR-27b-3p overexpression or inhibitor lentiviral transfection.Finally,the expression level of those target genes was analyzed after treating hRPE cells with pyridoxamine.RESULTS:Persistent exposure to high glucose gradually suppressed hRPE Nrf2,NQO1,and HO-1 mRNA and protein levels and increased miR-27b-3p mRNA levels.High glucose also promoted ROS release and inhibited cellular proliferation.Nrf2,NQO1,and HO-1 mRNA levels decreased after miR-27b-3p overexpression and,conversely,both mRNA and protein levels increased after expressing a miR-27b-3p inhibitor.After treating hRPE cells exposed to high glucose with pyridoxamine,ROS levels tended to decreased,proliferation rate increased,Nrf2,NQO1,and HO-1 mRNA and protein levels were upregulated,and miR-27b-3p mRNA levels were suppressed.CONCLUSION:Nrf2 is a downstream target of miR-27b-3p.Furthermore,the miR-27b-3p inhibitor pyridoxamine can alleviate high glucose injury by regulating the miR-27b-3p/Nrf2 axis.
基金supported by the Supporting Fund of the First Affiliated Hospital of Xi'an Medical University(XYFYPT-2023-01).
文摘Objective:To study the effects of Lycium barbarum polysaccharide(LBP)on the proliferation,apoptosis,and autophagy of retinal pigment epithelial(RPE)cells cultured under high-glucose conditions.Methods:The ARPE-19 cell line was randomly divided into a control group(normally cultured in Dulbecco's Modified Eagle Medium/Nutrient Mixture F-12[DMEM/F-12]medium),a high-glucose group(HG;50 mmol/L glucose added to DMEM/F-12 medium),and a HG+LBP group(incubated in DMEM/F-12 medium containing 1 mg/mL LBP for 24 h,and then treated with 50 mmol/L glucose for 24 h).Following Ad-mCherry-GFP-LC3B infection,cell proliferation,apoptosis,mammalian target of rapamy-cin(mTOR)expression,and autophagic flux were determined by Cell Counting Kit-8(CCK-8),AnnexinV-APC/7-AAD Apoptosis Detection Kit,Western blot,and laser confocal microscopy,respectively.Results:The proliferation rate of ARPE-19 cells in the HG group was significantly lower than that in the control group(P<0.05),while the proliferation rate of ARPE-19 cells in the HG+LBP group was significantly higher than that in the HG group(P<0.05).The apoptosis rate of ARPE-19 cells in the HG group was significantly higher than that in the control group(P<0.05),while the apoptosis rate of ARPE-19 cells in the HG+LBP group was significantly lower than that in the HG group(P<0.05).The relative expression of phosphorylated mTOR(p-mTOR)of ARPE-19 cells in the HG group was significantly lower than that in the control group(P<0.05),with enhanced autophagic flux;when compared with the HG group,the HG+LBP group had significantly higher expression of p-mTOR(P<0.05),with diminished autophagic flux.Conclusion:LBP has a protective effect on RPE cells with high glucose-induced injury,and its mechanism may be related to LBP inhibition of high glucose-induced abnormal autophagy.
基金Supported by Medical and Health Science and Technology Project of Zhejiang Province(No.2023KY1356).
文摘AIM:To evaluate the effects of LIN28A(human)on high glucose-induced retinal pigmented epithelium(RPE)cell injury and its possible mechanism.METHODS:Diabetic retinopathy model was generated following 48h of exposure to 30 mmol/L high glucose(HG)in ARPE-19 cells.Quantitative real-time polymerase chain reaction(qRT-PCR)and Western blot tested the expression of the corresponding genes and proteins.Cell viability as well as apoptosis was determined through cell counting kit-8(CCK-8)and flow cytometry assays.Immunofluorescence assay was adopted to evaluate autophagy activity.Caspase 3 activity,oxidative stress markers,and cytokines were appraised adopting their commercial kits,respectively.Finally,ARPE-19 cells were preincubated with EX527,a Sirtuin 1(SIRT1)inhibitor,prior to HG stimulation to validate the regulatory mechanism.RESULTS:LIN28A was downregulated in HG-challenged ARPE-19 cells.LIN28A overexpression greatly inhibited HGinduced ARPE-19 cell viability loss,apoptosis,oxidative damage as well as inflammatory response.Meanwhile,the repressed autophagy and SIRT1 in ARPE-19 cells challenged with HG were elevated after LIN28A overexpression.In addition,treatment of EX527 greatly inhibited the activated autophagy following LIN28A overexpression and partly abolished the protective role of LIN28A against HG-elicited apoptosis,oxidative damage as well as inflammation in ARPE-19 cells.CONCLUSION:LIN28A exerts a protective role against HG-elicited RPE oxidative damage,inflammation,as well as apoptosis via regulating SIRT1/autophagy.