期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
A new hybrid method with data‑characteristic‑driven analysis for artificial intelligence and robotics index return forecasting
1
作者 Yue‑Jun Zhang Han Zhang Rangan Gupta 《Financial Innovation》 2023年第1期2019-2041,共23页
Forecasting returns for the Artificial Intelligence and Robotics Index is of great significance for financial market stability,and the development of the artificial intelligence industry.To provide investors with a mo... Forecasting returns for the Artificial Intelligence and Robotics Index is of great significance for financial market stability,and the development of the artificial intelligence industry.To provide investors with a more reliable reference in terms of artificial intelligence index investment,this paper selects the NASDAQ CTA Artificial Intelligence and Robotics(AIRO)Index as the research target,and proposes innovative hybrid methods to forecast returns by considering its multiple structural characteristics.Specifically,this paper uses the ensemble empirical mode decomposition(EEMD)method and the modified iterative cumulative sum of squares(ICSS)algorithm to decompose the index returns and identify the structural breakpoints.Furthermore,it combines the least-square support vector machine approach with the particle swarm optimization method(PSO-LSSVM)and the generalized autoregressive conditional heteroskedasticity(GARCH)type models to construct innovative hybrid forecasting methods.On the one hand,the empirical results indicate that the AIRO index returns have complex structural characteristics,and present time-varying and nonlinear characteristics with high complexity and mutability;on the other hand,the newly proposed hybrid forecasting method(i.e.,the EEMD-PSO-LSSVM-ICSS-GARCH models)which considers these complex structural characteristics,can yield the optimal forecasting performance for the AIRO index returns. 展开更多
关键词 Artificial Intelligence and Robotics index return forecasting PSO-LSSVM model GARCH model Decomposition and integration model Combination model
下载PDF
Return direction forecasting:a conditional autoregressive shape model with beta density
2
作者 Haibin Xie Yuying Sun Pengying Fan 《Financial Innovation》 2023年第1期2251-2266,共16页
This paper derives a new decomposition of stock returns using price extremes and proposes a conditional autoregressive shape(CARS)model with beta density to predict the direction of stock returns.The CARS model is con... This paper derives a new decomposition of stock returns using price extremes and proposes a conditional autoregressive shape(CARS)model with beta density to predict the direction of stock returns.The CARS model is continuously valued,which makes it different from binary classification models.An empirical study is performed on the US stock market,and the results show that the predicting power of the CARS model is not only statistically significant but also economically valuable.We also compare the CARS model with the probit model,and the results demonstrate that the proposed CARS model outperforms the probit model for return direction forecasting.The CARS model provides a new framework for return direction forecasting. 展开更多
关键词 return direction forecasting Price extremes CARS Beta distribution
下载PDF
Predicting the daily return direction of the stock market using hybrid machine learning algorithms 被引量:10
3
作者 Xiao Zhong David Enke 《Financial Innovation》 2019年第1期435-454,共20页
Big data analytic techniques associated with machine learning algorithms are playing an increasingly important role in various application fields,including stock market investment.However,few studies have focused on f... Big data analytic techniques associated with machine learning algorithms are playing an increasingly important role in various application fields,including stock market investment.However,few studies have focused on forecasting daily stock market returns,especially when using powerful machine learning techniques,such as deep neural networks(DNNs),to perform the analyses.DNNs employ various deep learning algorithms based on the combination of network structure,activation function,and model parameters,with their performance depending on the format of the data representation.This paper presents a comprehensive big data analytics process to predict the daily return direction of the SPDR S&P 500 ETF(ticker symbol:SPY)based on 60 financial and economic features.DNNs and traditional artificial neural networks(ANNs)are then deployed over the entire preprocessed but untransformed dataset,along with two datasets transformed via principal component analysis(PCA),to predict the daily direction of future stock market index returns.While controlling for overfitting,a pattern for the classification accuracy of the DNNs is detected and demonstrated as the number of the hidden layers increases gradually from 12 to 1000.Moreover,a set of hypothesis testing procedures are implemented on the classification,and the simulation results show that the DNNs using two PCA-represented datasets give significantly higher classification accuracy than those using the entire untransformed dataset,as well as several other hybrid machine learning algorithms.In addition,the trading strategies guided by the DNN classification process based on PCA-represented data perform slightly better than the others tested,including in a comparison against two standard benchmarks. 展开更多
关键词 Daily stock return forecasting return direction classification Data representation Hybrid machine learning algorithms Deep neural networks(DNNs) Trading strategies
下载PDF
Forecasting of Stock Returns by Using Manifold Wavelet Support Vector Machine
4
作者 汤凌冰 盛焕烨 汤凌霄 《Journal of Shanghai Jiaotong university(Science)》 EI 2010年第1期49-53,共5页
An admissible manifold wavelet kernel is proposed to construct manifold wavelet support vector machine(MWSVM) for stock returns forecasting.The manifold wavelet kernel is obtained by incorporating manifold theory into... An admissible manifold wavelet kernel is proposed to construct manifold wavelet support vector machine(MWSVM) for stock returns forecasting.The manifold wavelet kernel is obtained by incorporating manifold theory into wavelet technique in support vector machine(SVM).Since manifold wavelet function can yield features that describe of the stock time series both at various locations and at varying time granularities,the MWSVM can approximate arbitrary nonlinear functions and forecast stock returns accurately.The applicability and validity of MWSVM for stock returns forecasting is confirmed through experiments on real-world stock data. 展开更多
关键词 stock returns forecasting KERNEL manifold wavelet support vector machine (MWSVM)
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部