The reverse flow diverter (RFD) consisting of a nozzle and a diffuser is a key component in pneumatic pulse jet pumps. We investigated the effects of suction gap and diffuser configurations on RFD performance during t...The reverse flow diverter (RFD) consisting of a nozzle and a diffuser is a key component in pneumatic pulse jet pumps. We investigated the effects of suction gap and diffuser configurations on RFD performance during the reverse flow mode. Three suction gap configurations were examined: (1) an axisymmetrical cylinder, (2) a cuboid whose bottom plane had no half-circle groove and was level with the diffuser entrance lower border, and (3) a cuboid with a half-circle groove on the bottom plane. Among them, the second one resulted in the highest RFD pumping capacity. The effect of receiver presence before the diffuser was also examined. RFD pumping efficiency was found to be enhanced in the presence of a receiver before the diffuser when the suction gap length is small and the jet outlet velocity at the nozzle exit is high enough. Based on experimental data, a dimensionless performance curve of the suction factor q versus the ratio of Euler numbers in sections out-out and 0-0 Eu out /Eu 0 was derived. This curve is insensitive to suction gap configurations.展开更多
A compact pneumatic pulse-jet pump with a Venturi-like reverse flow diverter,which consists of a nozzle and diffuser,is designed for lifting and transporting a hazardous fluid through a narrow mounting hole.The pumpin...A compact pneumatic pulse-jet pump with a Venturi-like reverse flow diverter,which consists of a nozzle and diffuser,is designed for lifting and transporting a hazardous fluid through a narrow mounting hole.The pumping performance for a liquid mixture or a liquid-solid mixture is examined in terms of the effects of liquid viscosity,particle mass concentration,lifting height,and compression pressure.Results reveal that the pumping performance of the compact pneumatic pulse-jet pump is controlled by jet inertia and the flow resistance of the riser tube positioned after the diffuser.The capacity of the compact pneumatic pulse-jet pump increases with compression pressure and decreases with liquid viscosity.However,even for a liquid mixture with a high viscosity of 7.38 mPa·s,a pumping capacity of 170.7 L·h-1 was observed.For a liquid mixture,two dimensionless indices of performance were found to be the ratio of Euler numbers Euout/EuDV and the suction factor q.As the liquid-solid mixture was lifted to elevation of 6.74 m by the compact pump,the particle size distributions of the liquid-solid mixture in the tank and from the riser tube outlet were determined by a particle size analyzer and found to coincide well.展开更多
This work is focused on the performance prediction of pilot scale catalytic reverse flow reactors used for combustion of lean methane-air mixtures. An unsteady one-dimensional heterogeneous model for the reactor was e...This work is focused on the performance prediction of pilot scale catalytic reverse flow reactors used for combustion of lean methane-air mixtures. An unsteady one-dimensional heterogeneous model for the reactor was established to account for the influence of the reactor wall on the heat transfer. Results of the simulation indicate that feed concentration, switch time and compensatory temperature impose important influence on the performance of the reactor. The amount of the heat extracted from the mid-section of the reactor can be optimized via adjusting the parameters mentioned above. At the optimal operating conditions, Le. switching time of 400 s, feed concentration of 1% (by volume), and insulation layer temperature of 343 K, the axial temperature of the reactor revealed a comparatively symmetrical "saddle" distribution, indicating a favorable operating status of the catalytic reverse flow reactor.展开更多
An accurate one-dimensional, heterogeneous model taking account of axial dispersion and heat transfer to the reactor wall, and heat conduction through the reactor wall for methanol synthesis in a bench scale reactor u...An accurate one-dimensional, heterogeneous model taking account of axial dispersion and heat transfer to the reactor wall, and heat conduction through the reactor wall for methanol synthesis in a bench scale reactor under periodic reversal of flow direction is presented. Adjustable parameters in this model are the effectiveness factors for each of the three reactions occurring in the synthesis and a factor for the bed to wall heat transfer coefficient correlation. Experimental data were used to evaluate these parameters and reasonable values of these parameters were obtained. The model was found to closely predict the reactor performance under a wide range of operating conditions, such as carbon oxide concentrations, volumetric flow rate, and cyclic period.展开更多
The ORB-SLAM2 based on the constant velocity model is difficult to determine the search window of the reprojection of map points when the objects are in variable velocity motion,which leads to a false matching,with an...The ORB-SLAM2 based on the constant velocity model is difficult to determine the search window of the reprojection of map points when the objects are in variable velocity motion,which leads to a false matching,with an inaccurate pose estimation or failed tracking.To address the challenge above,a new method of feature point matching is proposed in this paper,which combines the variable velocity model with the reverse optical flow method.First,the constant velocity model is extended to a new variable velocity model,and the expanded variable velocity model is used to provide the initial pixel shifting for the reverse optical flow method.Then the search range of feature points is accurately determined according to the results of the reverse optical flow method,thereby improving the accuracy and reliability of feature matching,with strengthened interframe tracking effects.Finally,we tested on TUM data set based on the RGB-D camera.Experimental results show that this method can reduce the probability of tracking failure and improve localization accuracy on SLAM(Simultaneous Localization and Mapping)systems.Compared with the traditional ORB-SLAM2,the test error of this method on each sequence in the TUM data set is significantly reduced,and the root mean square error is only 63.8%of the original system under the optimal condition.展开更多
The delayed detached-eddy simulation with adaptive coefficient(DDES-AC)method is used to simulate the baseline and leading-edge undulation control of dynamic stall for the reverse flow past a finite-span wing with NAC...The delayed detached-eddy simulation with adaptive coefficient(DDES-AC)method is used to simulate the baseline and leading-edge undulation control of dynamic stall for the reverse flow past a finite-span wing with NACA0012 airfoil.The numerical results of the baseline configuration are compared with available measurements.DDES and DDES-AC perform differently when predicting the primary and secondary dynamic stalls.Overall,DDES-AC performs better owing to the decrease of grey area between the strong shear layer and the fully three-dimensional separated flow.Moreover,the effects of the undulating leading-edge on the forces,lift gradients,and instantaneous flow structures are explored.Compared with the uncontrolled case,the lift gradient in the primary dynamic stall is reduced from 18.4 to 8.5,and the secondary dynamic stall disappears.Therefore,periodic unsteady air-loads are also reduced.Additionally,the control mechanism of the wavy leading edge(WLE)is also investigated by comparison with the straight leading edge(SLE).No sudden breakdown of strong vortices is the main cause for WLE control.展开更多
Hursts rescaled range (R/S) analysis and Wolfs attractor reconstruction technique have been adopted to estimate the local fractal dimensions and the local largest Lyapunov exponents in terms of the time series pressur...Hursts rescaled range (R/S) analysis and Wolfs attractor reconstruction technique have been adopted to estimate the local fractal dimensions and the local largest Lyapunov exponents in terms of the time series pressure fluctuations obtained from a gas liquid solid three phase self aspirated reversed flow jet loop reactor,respectively.The results indicate that the local fractal dimensions and the local largest Lyapunov exponents in both the jet region and the tubular region inside the draft tube increase with the increase in the jet liquid flowrates and the solid loadings,the local fractal dimension profiles are similar to those of the largest Lyapunov exponent,the local largest lyapunov exponents are positive for all cases,and the flow behavior of such a reactor is chaotic.The local nonlinear characteristic parameters such as the local fractal dimension and the local largest Lyapunov exponent could be applied to further study the flow properties such as the flow regime transitions and flow structures of this three phase jet loop reactor.展开更多
The local chaos characteristics of the time series pressure fluctuations of gas liquid two phase flow in a self aspirated reversed flow jet loop reactor are studied by the deterministic chaos analysis technique. It...The local chaos characteristics of the time series pressure fluctuations of gas liquid two phase flow in a self aspirated reversed flow jet loop reactor are studied by the deterministic chaos analysis technique. It is found that the estimated local largest Lyapunov exponent is positive in all cases and the profile is similar to that of the local fractal dimension in this reactor. The positive largest Lyapunov exponent shows that the reactor is a nonlinear chaotic system. The obvious distribution indicates that the local nonlinear characteristic parameters such as the Lyapunov exponent and the fractal dimension could be applied to further study the flow characteristics such as the flow regine transitions and flow structures of the multi phase reactors.展开更多
A novel, simple, rapid, sensitive and highly selective flow injection procedure for the spectrophotometric determination of chlorine dioxide in the presence of other chlorine species, viz,free chlorine, chlorite, chlo...A novel, simple, rapid, sensitive and highly selective flow injection procedure for the spectrophotometric determination of chlorine dioxide in the presence of other chlorine species, viz,free chlorine, chlorite, chlorate and hypochlorite, is developed. The method is based on the discoloration reaction between chlorine dioxide and chlorophenol red and can overcome the shortcomings existed in direct spectrophotometric determination for chlorine dioxide owing to the serious interference of free and combined chlorine. The procedure gave a linear calibration graph over the range 0—0.71 mg/L of chlorine dioxide. With a detection limit of 0.024 mg/L and a sample throughput of 60 samples/h.展开更多
To simulate steady airflows inside of wall-flow diesel particulate filters (DPF) with different reverse blowing pipes collocation, a mathematical model of the flow in a DPF is established by an equivalent continuum ...To simulate steady airflows inside of wall-flow diesel particulate filters (DPF) with different reverse blowing pipes collocation, a mathematical model of the flow in a DPF is established by an equivalent continuum approach. The experimental results agree well with the theoretical values calculated from the model. Simulation shows that the velocity and the pressure distribution of the filters in the regenerative process are key factors to the filter's regeneration. How to decrease the mal-distribution of the flow in the filter and how to achieve the better regenerative performance at the least cost of air consumption in the regenerative process are the ultimate goals of the study. Calculation and experiments show that the goals can be realized through adjusting the angle of two reverse blowing pipes and their relative location suitably.展开更多
A stopped-flow reversed flow injection method for the determination of free cyanide is proposed. Pyridine-barbituric acid mixture is injected in the flow system as reagent to form the colour species with cyanide. The ...A stopped-flow reversed flow injection method for the determination of free cyanide is proposed. Pyridine-barbituric acid mixture is injected in the flow system as reagent to form the colour species with cyanide. The flow is stopped when the reagent zone comes in the flow cell, where absorbance-time data are collected at 580nm wavelength. The linear range of the determination is 0.1 -10μg/ml CN-. The sampling rate is 60h-1 and the relative standard deviation is 1.6% (n=16) at 5.0 μg/ml CN-1 level. With satisfactory results, the proposed method was applied to the determination of free cyanide in wastewater without sample pretreatment.展开更多
The local liquid--phase characteristics of the gas--liquid two-phase and gas--liquid--solid threephase self-aspirated reversed flow jet loop reactor with a concentric gas--liquid injection nozzle were studied experime...The local liquid--phase characteristics of the gas--liquid two-phase and gas--liquid--solid threephase self-aspirated reversed flow jet loop reactor with a concentric gas--liquid injection nozzle were studied experimentally. They facilitate the evaluation of local phenomena. The local instantaneous liquid velocities at different axial positions of the reactor were measured by using the modified pilot tube.The local liquid-phase turbulent structural parameters such as time-averaged velocity. turbulent nuctuating velocity and turbulent micro scale were calculated with the aid of the statistical theory of turbulence. In particular, effects of liquid jet flowrates and solid loadings on the profiles of the liquid--phase turbulent structural parameter both in the jet effective region and in the tubular region inside the draft tube were discussed.展开更多
Minquartia guianensis Aubl.is a slow-growing species with several uses.In the juvenile state,it is well-adapted to low light conditions of the forest understory.However,it is still unknown how climate variability affe...Minquartia guianensis Aubl.is a slow-growing species with several uses.In the juvenile state,it is well-adapted to low light conditions of the forest understory.However,it is still unknown how climate variability affects transpiration of this species,particularly under drought stress.In this study,we aimed to assess the effect of climatic variability on sap flow rates(SFR).SFR and radial growth were measured in six trees(14-50 cm diameter)in 2015 and 2016.Climate(precipitation,irradiance,relative humidity and temperature)and soil water content(SWC)data were also collected.SFR tended to increase in the dry season,with a negative relationship between SFR and SWC and precipitation(p<0.001),while there was a positive association between radial growth and monthly precipitation(p=0.004).Irradiance and temperature were the environmental factors more closely correlated with SFR during daytime(p<0.001),whereas relative humidity and vapor pressure deficit were the most important factors at night(p<0.001).Although negative SFR were sometimes recorded at night,the mean nocturnal sap flow was positive and across trees the nighttime sap flow accounted for 12.5%of the total daily sap flow.Increased transpiration during the dry season suggests that the root system of Minquartia was able to extract water from deep soil layers.These results widen our understanding of the ecophysiology of Amazonian trees under drought and provide further insight into the potential effect of the forecasted decline in precipitation in the Amazon region.展开更多
The B2-Eirene (SOLPS 4.0) code package is used to investigate the plasma parallel flow, i.e., the scrape-off layer (SOL) flow, in the experimental advanced superconducting tokamak (EAST) divertor. Simulation res...The B2-Eirene (SOLPS 4.0) code package is used to investigate the plasma parallel flow, i.e., the scrape-off layer (SOL) flow, in the experimental advanced superconducting tokamak (EAST) divertor. Simulation results show that the SOL flow in the divertor region can exhibit complex behaviour, such as a high Mach flow and flow reversal in different plasma regimes. When the divertor plasma is in the detachment state, the high Mach flow with approaching or exceeding sonic speed is observed away from the target plate in our simulation. When the divertor plasma is in the high recycling ~tate, the flow reversM with a ~mall Mach number (IMI 〈 0.2) is observed near the X-point along the separatrix region. The driving mechanisms for the high Mach flow and the reversed flow are analysed theoretically through momentum and continuity equations, respectively. The profile of the ionization sources is shown to be a possible formation condition causing the complex behaviour of the SOL flow. In addition, the effects of the high Mach flow and the flow reversal on the impurity transport are also discussed in this paper.展开更多
Against the prevailing background of an unusual capital flow reversal which is posing immense challenges to the integration of the region's banking sector, this study measures macro-prudential instruments affecting t...Against the prevailing background of an unusual capital flow reversal which is posing immense challenges to the integration of the region's banking sector, this study measures macro-prudential instruments affecting the implementation of an integrated financial service industry. This study is important at times when domestic and country-based financial policies are directed at competing goals. The interaction of macro-prudential policies with other policies, in particular monetary policies and micro-prudential policies is crucial to address systemic risk involved. There is growing recognition that prudential policies tools interact and coordinate with one another. To utilize multiple instruments seems to provide a greater assurance of effectiveness by tackling risk from various angles. As such, this study also assesses the interactions of the policies. The study also proposes a baseline model to capture systemic risk due to liquidity risk and risk because of currency devaluation.展开更多
In patients with history of coronary artery disease angina pectoris is usually attributed to the progression of atherosclerotic lesions. However,in patients with previous coronary artery bypass graft operation(CABG) u...In patients with history of coronary artery disease angina pectoris is usually attributed to the progression of atherosclerotic lesions. However,in patients with previous coronary artery bypass graft operation(CABG) using internal mammary artery grafts,great vessel disease should also be considered. Herein we present two patients with history of CABG whose symptoms were suspicious for coronary ischemia. During cardiac catheterization reverse blood flow was observed from the left artery disease to the left internal mammary artery(LIMA) graft in both cases. After angioplasty and stent implantation of the left subclavian artery antegrade flow was restored in the LIMA grafts and both patients had complete resolution of symptoms.展开更多
Fluid mechanical peristaltic transport through esophagus is studied in the paper. A mathematical model has been developed to study the peristaltic transport of a rheological fluid for arbitrary wave shapes and tube le...Fluid mechanical peristaltic transport through esophagus is studied in the paper. A mathematical model has been developed to study the peristaltic transport of a rheological fluid for arbitrary wave shapes and tube lengths. The Ostwald-de Waele power law of a viscous fluid is considered here to depict the non-Newtonian behaviour of the fluid. The model is formulated and analyzed specifically to explore some important information concerning the movement of food bolus through esophagus. The analysis is carried out by using the lubrication theory. The study is particularly suitable for the cases where the Reynolds number is small. The esophagus is treated as a circular tube through which the transport of food bolus takes place by periodic contraction of the esophageal wall. Variation of different variables concerned with the transport phenomena such as pressure, flow velocities, particle trajectory, and reflux is investigated for a single wave as well as a train of periodic peristaltic waves. The locally variable pressure is seen to be highly sensitive to the flow index "n". The study clearly shows that continuous fluid transport for Newtonian/rheological fluids by wave train propagation is more effective than widely spaced single wave propagation in the case of peristaltic movement of food bolus in the esophagus.展开更多
We present observations of a duskside shock aurora occurred on 21 April 2001 by the SuperDARN radar at Syowa Station and the all-sky camera at Zhongshan Station (ZHS) in Antarctica when the radar was operated in fas...We present observations of a duskside shock aurora occurred on 21 April 2001 by the SuperDARN radar at Syowa Station and the all-sky camera at Zhongshan Station (ZHS) in Antarctica when the radar was operated in fast-scan mode covering the ZHS region. With the two independent data sets, we examine ionospheric plasma convection and aurora arising from a sudden impulse (SI) event associated with an interplanetary shock. During the transient shock compression, the aurora was quiescent without any optical emission at the preliminary impulse of the SI. About 7 min later, a new thin auroral arc with brighter emissions and a lifetime of -14 rain expanded westward from the region above ZHS during the main impulse of the SI. SuperDARN radar line-of-sight measurements showed periodical oscillation in the flow direction with ultra-low-frequency waves having a period of -8 min during the shock compression. We suggest that downward field-aligned current during the preliminary impulse stage of the SI was the main driver of the first plasma flow reversal, and the subsequent new discrete auroral arc may be associated with field-aligned acceleration in the region of the main impulse related upward field-aligned currents. The ground magnetometer observations suggest that the oscillation of the ionospheric convection on the duskside was associated with field line resonance activity.展开更多
Photonic nanojets(PNJs)are subwavelength jet-like propagating waves generated by illuminating a dielectric microstructure with an electromagnetic wave,conventionally a linearly polarized plane wave.Here,we study the d...Photonic nanojets(PNJs)are subwavelength jet-like propagating waves generated by illuminating a dielectric microstructure with an electromagnetic wave,conventionally a linearly polarized plane wave.Here,we study the donut-like PNJ produced when a circularly polarized vortex beam is used instead.This novel PNJ also has a reverse energy flow at the donut-like focal plane depending on both the optical vortex topological charge and microsphere size.Our tunable PNJ,which we investigate numerically and analytically,can find applications in optical micromanipulation and trapping.展开更多
A new type fully reversible combined blade is presented, which can fully reverse airflow during the inverse ventilation by simply reversion. It is suitable for reversible axial flow fans used in tunnel and mine ventil...A new type fully reversible combined blade is presented, which can fully reverse airflow during the inverse ventilation by simply reversion. It is suitable for reversible axial flow fans used in tunnel and mine ventilation. The optimal parameters such as overlap ratio and pitch ratio are determined through cascade experiment. Experiment results also show a big promotion of maximum lift coefficient C1,max and stall attack angle a1,max compared to the existing bi-directional symmetry airfoils.展开更多
文摘The reverse flow diverter (RFD) consisting of a nozzle and a diffuser is a key component in pneumatic pulse jet pumps. We investigated the effects of suction gap and diffuser configurations on RFD performance during the reverse flow mode. Three suction gap configurations were examined: (1) an axisymmetrical cylinder, (2) a cuboid whose bottom plane had no half-circle groove and was level with the diffuser entrance lower border, and (3) a cuboid with a half-circle groove on the bottom plane. Among them, the second one resulted in the highest RFD pumping capacity. The effect of receiver presence before the diffuser was also examined. RFD pumping efficiency was found to be enhanced in the presence of a receiver before the diffuser when the suction gap length is small and the jet outlet velocity at the nozzle exit is high enough. Based on experimental data, a dimensionless performance curve of the suction factor q versus the ratio of Euler numbers in sections out-out and 0-0 Eu out /Eu 0 was derived. This curve is insensitive to suction gap configurations.
文摘A compact pneumatic pulse-jet pump with a Venturi-like reverse flow diverter,which consists of a nozzle and diffuser,is designed for lifting and transporting a hazardous fluid through a narrow mounting hole.The pumping performance for a liquid mixture or a liquid-solid mixture is examined in terms of the effects of liquid viscosity,particle mass concentration,lifting height,and compression pressure.Results reveal that the pumping performance of the compact pneumatic pulse-jet pump is controlled by jet inertia and the flow resistance of the riser tube positioned after the diffuser.The capacity of the compact pneumatic pulse-jet pump increases with compression pressure and decreases with liquid viscosity.However,even for a liquid mixture with a high viscosity of 7.38 mPa·s,a pumping capacity of 170.7 L·h-1 was observed.For a liquid mixture,two dimensionless indices of performance were found to be the ratio of Euler numbers Euout/EuDV and the suction factor q.As the liquid-solid mixture was lifted to elevation of 6.74 m by the compact pump,the particle size distributions of the liquid-solid mixture in the tank and from the riser tube outlet were determined by a particle size analyzer and found to coincide well.
基金Supported by the National High Technology Research and Development Program of China(2006AA030201)
文摘This work is focused on the performance prediction of pilot scale catalytic reverse flow reactors used for combustion of lean methane-air mixtures. An unsteady one-dimensional heterogeneous model for the reactor was established to account for the influence of the reactor wall on the heat transfer. Results of the simulation indicate that feed concentration, switch time and compensatory temperature impose important influence on the performance of the reactor. The amount of the heat extracted from the mid-section of the reactor can be optimized via adjusting the parameters mentioned above. At the optimal operating conditions, Le. switching time of 400 s, feed concentration of 1% (by volume), and insulation layer temperature of 343 K, the axial temperature of the reactor revealed a comparatively symmetrical "saddle" distribution, indicating a favorable operating status of the catalytic reverse flow reactor.
基金The authors are grateful for financial support from the National Natural Science Foundation of China (No. 29476223) and the Ministry of Chemical Industry of China (No. 95-23-01).
文摘An accurate one-dimensional, heterogeneous model taking account of axial dispersion and heat transfer to the reactor wall, and heat conduction through the reactor wall for methanol synthesis in a bench scale reactor under periodic reversal of flow direction is presented. Adjustable parameters in this model are the effectiveness factors for each of the three reactions occurring in the synthesis and a factor for the bed to wall heat transfer coefficient correlation. Experimental data were used to evaluate these parameters and reasonable values of these parameters were obtained. The model was found to closely predict the reactor performance under a wide range of operating conditions, such as carbon oxide concentrations, volumetric flow rate, and cyclic period.
基金This work was supported by The National Natural Science Foundation of China under Grant No.61304205 and NO.61502240The Natural Science Foundation of Jiangsu Province under Grant No.BK20191401 and No.BK20201136Postgraduate Research&Practice Innovation Program of Jiangsu Province under Grant No.SJCX21_0364 and No.SJCX21_0363.
文摘The ORB-SLAM2 based on the constant velocity model is difficult to determine the search window of the reprojection of map points when the objects are in variable velocity motion,which leads to a false matching,with an inaccurate pose estimation or failed tracking.To address the challenge above,a new method of feature point matching is proposed in this paper,which combines the variable velocity model with the reverse optical flow method.First,the constant velocity model is extended to a new variable velocity model,and the expanded variable velocity model is used to provide the initial pixel shifting for the reverse optical flow method.Then the search range of feature points is accurately determined according to the results of the reverse optical flow method,thereby improving the accuracy and reliability of feature matching,with strengthened interframe tracking effects.Finally,we tested on TUM data set based on the RGB-D camera.Experimental results show that this method can reduce the probability of tracking failure and improve localization accuracy on SLAM(Simultaneous Localization and Mapping)systems.Compared with the traditional ORB-SLAM2,the test error of this method on each sequence in the TUM data set is significantly reduced,and the root mean square error is only 63.8%of the original system under the optimal condition.
基金the National Natural Science Foundation of China(Grants 91852113 and 11772174,and 91952302),National Key Project(Grant GJXM92579)the National Key R&D Program of China(Grant 2019YFA0405302)the authors would like to express their gratitude to Tsinghua National Laboratory for Information Science and Tech no logy for computation resources.
文摘The delayed detached-eddy simulation with adaptive coefficient(DDES-AC)method is used to simulate the baseline and leading-edge undulation control of dynamic stall for the reverse flow past a finite-span wing with NACA0012 airfoil.The numerical results of the baseline configuration are compared with available measurements.DDES and DDES-AC perform differently when predicting the primary and secondary dynamic stalls.Overall,DDES-AC performs better owing to the decrease of grey area between the strong shear layer and the fully three-dimensional separated flow.Moreover,the effects of the undulating leading-edge on the forces,lift gradients,and instantaneous flow structures are explored.Compared with the uncontrolled case,the lift gradient in the primary dynamic stall is reduced from 18.4 to 8.5,and the secondary dynamic stall disappears.Therefore,periodic unsteady air-loads are also reduced.Additionally,the control mechanism of the wavy leading edge(WLE)is also investigated by comparison with the straight leading edge(SLE).No sudden breakdown of strong vortices is the main cause for WLE control.
文摘Hursts rescaled range (R/S) analysis and Wolfs attractor reconstruction technique have been adopted to estimate the local fractal dimensions and the local largest Lyapunov exponents in terms of the time series pressure fluctuations obtained from a gas liquid solid three phase self aspirated reversed flow jet loop reactor,respectively.The results indicate that the local fractal dimensions and the local largest Lyapunov exponents in both the jet region and the tubular region inside the draft tube increase with the increase in the jet liquid flowrates and the solid loadings,the local fractal dimension profiles are similar to those of the largest Lyapunov exponent,the local largest lyapunov exponents are positive for all cases,and the flow behavior of such a reactor is chaotic.The local nonlinear characteristic parameters such as the local fractal dimension and the local largest Lyapunov exponent could be applied to further study the flow properties such as the flow regime transitions and flow structures of this three phase jet loop reactor.
文摘The local chaos characteristics of the time series pressure fluctuations of gas liquid two phase flow in a self aspirated reversed flow jet loop reactor are studied by the deterministic chaos analysis technique. It is found that the estimated local largest Lyapunov exponent is positive in all cases and the profile is similar to that of the local fractal dimension in this reactor. The positive largest Lyapunov exponent shows that the reactor is a nonlinear chaotic system. The obvious distribution indicates that the local nonlinear characteristic parameters such as the Lyapunov exponent and the fractal dimension could be applied to further study the flow characteristics such as the flow regine transitions and flow structures of the multi phase reactors.
文摘A novel, simple, rapid, sensitive and highly selective flow injection procedure for the spectrophotometric determination of chlorine dioxide in the presence of other chlorine species, viz,free chlorine, chlorite, chlorate and hypochlorite, is developed. The method is based on the discoloration reaction between chlorine dioxide and chlorophenol red and can overcome the shortcomings existed in direct spectrophotometric determination for chlorine dioxide owing to the serious interference of free and combined chlorine. The procedure gave a linear calibration graph over the range 0—0.71 mg/L of chlorine dioxide. With a detection limit of 0.024 mg/L and a sample throughput of 60 samples/h.
基金This project is supported by National Hi-tech Research and DevelopmentProgram of China (863 Program, No.2003AA643010B).
文摘To simulate steady airflows inside of wall-flow diesel particulate filters (DPF) with different reverse blowing pipes collocation, a mathematical model of the flow in a DPF is established by an equivalent continuum approach. The experimental results agree well with the theoretical values calculated from the model. Simulation shows that the velocity and the pressure distribution of the filters in the regenerative process are key factors to the filter's regeneration. How to decrease the mal-distribution of the flow in the filter and how to achieve the better regenerative performance at the least cost of air consumption in the regenerative process are the ultimate goals of the study. Calculation and experiments show that the goals can be realized through adjusting the angle of two reverse blowing pipes and their relative location suitably.
基金This study was supported by the National Natural Science Foundation of China
文摘A stopped-flow reversed flow injection method for the determination of free cyanide is proposed. Pyridine-barbituric acid mixture is injected in the flow system as reagent to form the colour species with cyanide. The flow is stopped when the reagent zone comes in the flow cell, where absorbance-time data are collected at 580nm wavelength. The linear range of the determination is 0.1 -10μg/ml CN-. The sampling rate is 60h-1 and the relative standard deviation is 1.6% (n=16) at 5.0 μg/ml CN-1 level. With satisfactory results, the proposed method was applied to the determination of free cyanide in wastewater without sample pretreatment.
文摘The local liquid--phase characteristics of the gas--liquid two-phase and gas--liquid--solid threephase self-aspirated reversed flow jet loop reactor with a concentric gas--liquid injection nozzle were studied experimentally. They facilitate the evaluation of local phenomena. The local instantaneous liquid velocities at different axial positions of the reactor were measured by using the modified pilot tube.The local liquid-phase turbulent structural parameters such as time-averaged velocity. turbulent nuctuating velocity and turbulent micro scale were calculated with the aid of the statistical theory of turbulence. In particular, effects of liquid jet flowrates and solid loadings on the profiles of the liquid--phase turbulent structural parameter both in the jet effective region and in the tubular region inside the draft tube were discussed.
基金supported by research project(MCTI/INPA:PRJ-15.120)。
文摘Minquartia guianensis Aubl.is a slow-growing species with several uses.In the juvenile state,it is well-adapted to low light conditions of the forest understory.However,it is still unknown how climate variability affects transpiration of this species,particularly under drought stress.In this study,we aimed to assess the effect of climatic variability on sap flow rates(SFR).SFR and radial growth were measured in six trees(14-50 cm diameter)in 2015 and 2016.Climate(precipitation,irradiance,relative humidity and temperature)and soil water content(SWC)data were also collected.SFR tended to increase in the dry season,with a negative relationship between SFR and SWC and precipitation(p<0.001),while there was a positive association between radial growth and monthly precipitation(p=0.004).Irradiance and temperature were the environmental factors more closely correlated with SFR during daytime(p<0.001),whereas relative humidity and vapor pressure deficit were the most important factors at night(p<0.001).Although negative SFR were sometimes recorded at night,the mean nocturnal sap flow was positive and across trees the nighttime sap flow accounted for 12.5%of the total daily sap flow.Increased transpiration during the dry season suggests that the root system of Minquartia was able to extract water from deep soil layers.These results widen our understanding of the ecophysiology of Amazonian trees under drought and provide further insight into the potential effect of the forecasted decline in precipitation in the Amazon region.
基金Project supported by the Knowledge Innovation Program of the Chinese Academy of Sciences (Grant No.085FCQ0123)the Chinese National Fusion Project for ITER (Grant No.2009GB106001)
文摘The B2-Eirene (SOLPS 4.0) code package is used to investigate the plasma parallel flow, i.e., the scrape-off layer (SOL) flow, in the experimental advanced superconducting tokamak (EAST) divertor. Simulation results show that the SOL flow in the divertor region can exhibit complex behaviour, such as a high Mach flow and flow reversal in different plasma regimes. When the divertor plasma is in the detachment state, the high Mach flow with approaching or exceeding sonic speed is observed away from the target plate in our simulation. When the divertor plasma is in the high recycling ~tate, the flow reversM with a ~mall Mach number (IMI 〈 0.2) is observed near the X-point along the separatrix region. The driving mechanisms for the high Mach flow and the reversed flow are analysed theoretically through momentum and continuity equations, respectively. The profile of the ionization sources is shown to be a possible formation condition causing the complex behaviour of the SOL flow. In addition, the effects of the high Mach flow and the flow reversal on the impurity transport are also discussed in this paper.
文摘Against the prevailing background of an unusual capital flow reversal which is posing immense challenges to the integration of the region's banking sector, this study measures macro-prudential instruments affecting the implementation of an integrated financial service industry. This study is important at times when domestic and country-based financial policies are directed at competing goals. The interaction of macro-prudential policies with other policies, in particular monetary policies and micro-prudential policies is crucial to address systemic risk involved. There is growing recognition that prudential policies tools interact and coordinate with one another. To utilize multiple instruments seems to provide a greater assurance of effectiveness by tackling risk from various angles. As such, this study also assesses the interactions of the policies. The study also proposes a baseline model to capture systemic risk due to liquidity risk and risk because of currency devaluation.
文摘In patients with history of coronary artery disease angina pectoris is usually attributed to the progression of atherosclerotic lesions. However,in patients with previous coronary artery bypass graft operation(CABG) using internal mammary artery grafts,great vessel disease should also be considered. Herein we present two patients with history of CABG whose symptoms were suspicious for coronary ischemia. During cardiac catheterization reverse blood flow was observed from the left artery disease to the left internal mammary artery(LIMA) graft in both cases. After angioplasty and stent implantation of the left subclavian artery antegrade flow was restored in the LIMA grafts and both patients had complete resolution of symptoms.
基金the Council of Scientific and Industrial Research (CSIR) of New Delhi for awarding him a scientific research fund
文摘Fluid mechanical peristaltic transport through esophagus is studied in the paper. A mathematical model has been developed to study the peristaltic transport of a rheological fluid for arbitrary wave shapes and tube lengths. The Ostwald-de Waele power law of a viscous fluid is considered here to depict the non-Newtonian behaviour of the fluid. The model is formulated and analyzed specifically to explore some important information concerning the movement of food bolus through esophagus. The analysis is carried out by using the lubrication theory. The study is particularly suitable for the cases where the Reynolds number is small. The esophagus is treated as a circular tube through which the transport of food bolus takes place by periodic contraction of the esophageal wall. Variation of different variables concerned with the transport phenomena such as pressure, flow velocities, particle trajectory, and reflux is investigated for a single wave as well as a train of periodic peristaltic waves. The locally variable pressure is seen to be highly sensitive to the flow index "n". The study clearly shows that continuous fluid transport for Newtonian/rheological fluids by wave train propagation is more effective than widely spaced single wave propagation in the case of peristaltic movement of food bolus in the esophagus.
基金supported by the Polar Strategic Research Foundation of China(Grant no.20100203)the National Natural Science Foundation of China(Grant nos.40974083,41031064,40904041)+2 种基金the Ocean Public Welfare Scientific Research Project of China(Grant no.201005017)the International Collaboration Supporting Project,Chinese Arctic and Antarctic Administration(Grant no.IC201303)the National Basic Research Program of China(Grant no.2010CB950503-06)
文摘We present observations of a duskside shock aurora occurred on 21 April 2001 by the SuperDARN radar at Syowa Station and the all-sky camera at Zhongshan Station (ZHS) in Antarctica when the radar was operated in fast-scan mode covering the ZHS region. With the two independent data sets, we examine ionospheric plasma convection and aurora arising from a sudden impulse (SI) event associated with an interplanetary shock. During the transient shock compression, the aurora was quiescent without any optical emission at the preliminary impulse of the SI. About 7 min later, a new thin auroral arc with brighter emissions and a lifetime of -14 rain expanded westward from the region above ZHS during the main impulse of the SI. SuperDARN radar line-of-sight measurements showed periodical oscillation in the flow direction with ultra-low-frequency waves having a period of -8 min during the shock compression. We suggest that downward field-aligned current during the preliminary impulse stage of the SI was the main driver of the first plasma flow reversal, and the subsequent new discrete auroral arc may be associated with field-aligned acceleration in the region of the main impulse related upward field-aligned currents. The ground magnetometer observations suggest that the oscillation of the ionospheric convection on the duskside was associated with field line resonance activity.
基金supported by the National Key R&D Program of China(Nos.2018YFA0306200 and 2017YFA0303700)the National Natural Science Foundation of China(NSFC)(Nos.91750202,61805119,61604073,and 11404170)+1 种基金the Natural Science Foundation of Jiangsu Province of China(Nos.BK20160839 and BK20180469)the Scientific Research Project of Nanjing University of Posts and Telecommunications(No.NY219045)。
文摘Photonic nanojets(PNJs)are subwavelength jet-like propagating waves generated by illuminating a dielectric microstructure with an electromagnetic wave,conventionally a linearly polarized plane wave.Here,we study the donut-like PNJ produced when a circularly polarized vortex beam is used instead.This novel PNJ also has a reverse energy flow at the donut-like focal plane depending on both the optical vortex topological charge and microsphere size.Our tunable PNJ,which we investigate numerically and analytically,can find applications in optical micromanipulation and trapping.
文摘A new type fully reversible combined blade is presented, which can fully reverse airflow during the inverse ventilation by simply reversion. It is suitable for reversible axial flow fans used in tunnel and mine ventilation. The optimal parameters such as overlap ratio and pitch ratio are determined through cascade experiment. Experiment results also show a big promotion of maximum lift coefficient C1,max and stall attack angle a1,max compared to the existing bi-directional symmetry airfoils.