This work is focused on the performance prediction of pilot scale catalytic reverse flow reactors used for combustion of lean methane-air mixtures. An unsteady one-dimensional heterogeneous model for the reactor was e...This work is focused on the performance prediction of pilot scale catalytic reverse flow reactors used for combustion of lean methane-air mixtures. An unsteady one-dimensional heterogeneous model for the reactor was established to account for the influence of the reactor wall on the heat transfer. Results of the simulation indicate that feed concentration, switch time and compensatory temperature impose important influence on the performance of the reactor. The amount of the heat extracted from the mid-section of the reactor can be optimized via adjusting the parameters mentioned above. At the optimal operating conditions, Le. switching time of 400 s, feed concentration of 1% (by volume), and insulation layer temperature of 343 K, the axial temperature of the reactor revealed a comparatively symmetrical "saddle" distribution, indicating a favorable operating status of the catalytic reverse flow reactor.展开更多
An accurate one-dimensional, heterogeneous model taking account of axial dispersion and heat transfer to the reactor wall, and heat conduction through the reactor wall for methanol synthesis in a bench scale reactor u...An accurate one-dimensional, heterogeneous model taking account of axial dispersion and heat transfer to the reactor wall, and heat conduction through the reactor wall for methanol synthesis in a bench scale reactor under periodic reversal of flow direction is presented. Adjustable parameters in this model are the effectiveness factors for each of the three reactions occurring in the synthesis and a factor for the bed to wall heat transfer coefficient correlation. Experimental data were used to evaluate these parameters and reasonable values of these parameters were obtained. The model was found to closely predict the reactor performance under a wide range of operating conditions, such as carbon oxide concentrations, volumetric flow rate, and cyclic period.展开更多
Hursts rescaled range (R/S) analysis and Wolfs attractor reconstruction technique have been adopted to estimate the local fractal dimensions and the local largest Lyapunov exponents in terms of the time series pressur...Hursts rescaled range (R/S) analysis and Wolfs attractor reconstruction technique have been adopted to estimate the local fractal dimensions and the local largest Lyapunov exponents in terms of the time series pressure fluctuations obtained from a gas liquid solid three phase self aspirated reversed flow jet loop reactor,respectively.The results indicate that the local fractal dimensions and the local largest Lyapunov exponents in both the jet region and the tubular region inside the draft tube increase with the increase in the jet liquid flowrates and the solid loadings,the local fractal dimension profiles are similar to those of the largest Lyapunov exponent,the local largest lyapunov exponents are positive for all cases,and the flow behavior of such a reactor is chaotic.The local nonlinear characteristic parameters such as the local fractal dimension and the local largest Lyapunov exponent could be applied to further study the flow properties such as the flow regime transitions and flow structures of this three phase jet loop reactor.展开更多
The local chaos characteristics of the time series pressure fluctuations of gas liquid two phase flow in a self aspirated reversed flow jet loop reactor are studied by the deterministic chaos analysis technique. It...The local chaos characteristics of the time series pressure fluctuations of gas liquid two phase flow in a self aspirated reversed flow jet loop reactor are studied by the deterministic chaos analysis technique. It is found that the estimated local largest Lyapunov exponent is positive in all cases and the profile is similar to that of the local fractal dimension in this reactor. The positive largest Lyapunov exponent shows that the reactor is a nonlinear chaotic system. The obvious distribution indicates that the local nonlinear characteristic parameters such as the Lyapunov exponent and the fractal dimension could be applied to further study the flow characteristics such as the flow regine transitions and flow structures of the multi phase reactors.展开更多
The local liquid--phase characteristics of the gas--liquid two-phase and gas--liquid--solid threephase self-aspirated reversed flow jet loop reactor with a concentric gas--liquid injection nozzle were studied experime...The local liquid--phase characteristics of the gas--liquid two-phase and gas--liquid--solid threephase self-aspirated reversed flow jet loop reactor with a concentric gas--liquid injection nozzle were studied experimentally. They facilitate the evaluation of local phenomena. The local instantaneous liquid velocities at different axial positions of the reactor were measured by using the modified pilot tube.The local liquid-phase turbulent structural parameters such as time-averaged velocity. turbulent nuctuating velocity and turbulent micro scale were calculated with the aid of the statistical theory of turbulence. In particular, effects of liquid jet flowrates and solid loadings on the profiles of the liquid--phase turbulent structural parameter both in the jet effective region and in the tubular region inside the draft tube were discussed.展开更多
The control system of a catalytic flow reversal reactor (CFRR) for the mitigation of ventilation air methane was investigated. A one-dimensional heteroge- neous model with a logic-based controller was applied to sim...The control system of a catalytic flow reversal reactor (CFRR) for the mitigation of ventilation air methane was investigated. A one-dimensional heteroge- neous model with a logic-based controller was applied to simulate the CFRR. The simulation results indicated that the controller developed in this work performs well under normal conditions. Air dilution and auxiliary methane injection are effective to avoid the catalyst overheating and reaction extinction caused by prolonged rich and lean feed conditions, respectively. In contrast, the reactor is prone to lose control by adjusting the switching time solely. Air dilution exhibits the effects of two contradictory aspects on the operation of CFRR, i.e., cooling the bed and accumulating heat, though the former is in general more prominent. Lowering the reference temperature for flow reversal can decrease the bed temperature and benefit stable operation under rich methane feed condition.展开更多
基金Supported by the National High Technology Research and Development Program of China(2006AA030201)
文摘This work is focused on the performance prediction of pilot scale catalytic reverse flow reactors used for combustion of lean methane-air mixtures. An unsteady one-dimensional heterogeneous model for the reactor was established to account for the influence of the reactor wall on the heat transfer. Results of the simulation indicate that feed concentration, switch time and compensatory temperature impose important influence on the performance of the reactor. The amount of the heat extracted from the mid-section of the reactor can be optimized via adjusting the parameters mentioned above. At the optimal operating conditions, Le. switching time of 400 s, feed concentration of 1% (by volume), and insulation layer temperature of 343 K, the axial temperature of the reactor revealed a comparatively symmetrical "saddle" distribution, indicating a favorable operating status of the catalytic reverse flow reactor.
基金The authors are grateful for financial support from the National Natural Science Foundation of China (No. 29476223) and the Ministry of Chemical Industry of China (No. 95-23-01).
文摘An accurate one-dimensional, heterogeneous model taking account of axial dispersion and heat transfer to the reactor wall, and heat conduction through the reactor wall for methanol synthesis in a bench scale reactor under periodic reversal of flow direction is presented. Adjustable parameters in this model are the effectiveness factors for each of the three reactions occurring in the synthesis and a factor for the bed to wall heat transfer coefficient correlation. Experimental data were used to evaluate these parameters and reasonable values of these parameters were obtained. The model was found to closely predict the reactor performance under a wide range of operating conditions, such as carbon oxide concentrations, volumetric flow rate, and cyclic period.
文摘Hursts rescaled range (R/S) analysis and Wolfs attractor reconstruction technique have been adopted to estimate the local fractal dimensions and the local largest Lyapunov exponents in terms of the time series pressure fluctuations obtained from a gas liquid solid three phase self aspirated reversed flow jet loop reactor,respectively.The results indicate that the local fractal dimensions and the local largest Lyapunov exponents in both the jet region and the tubular region inside the draft tube increase with the increase in the jet liquid flowrates and the solid loadings,the local fractal dimension profiles are similar to those of the largest Lyapunov exponent,the local largest lyapunov exponents are positive for all cases,and the flow behavior of such a reactor is chaotic.The local nonlinear characteristic parameters such as the local fractal dimension and the local largest Lyapunov exponent could be applied to further study the flow properties such as the flow regime transitions and flow structures of this three phase jet loop reactor.
文摘The local chaos characteristics of the time series pressure fluctuations of gas liquid two phase flow in a self aspirated reversed flow jet loop reactor are studied by the deterministic chaos analysis technique. It is found that the estimated local largest Lyapunov exponent is positive in all cases and the profile is similar to that of the local fractal dimension in this reactor. The positive largest Lyapunov exponent shows that the reactor is a nonlinear chaotic system. The obvious distribution indicates that the local nonlinear characteristic parameters such as the Lyapunov exponent and the fractal dimension could be applied to further study the flow characteristics such as the flow regine transitions and flow structures of the multi phase reactors.
文摘The local liquid--phase characteristics of the gas--liquid two-phase and gas--liquid--solid threephase self-aspirated reversed flow jet loop reactor with a concentric gas--liquid injection nozzle were studied experimentally. They facilitate the evaluation of local phenomena. The local instantaneous liquid velocities at different axial positions of the reactor were measured by using the modified pilot tube.The local liquid-phase turbulent structural parameters such as time-averaged velocity. turbulent nuctuating velocity and turbulent micro scale were calculated with the aid of the statistical theory of turbulence. In particular, effects of liquid jet flowrates and solid loadings on the profiles of the liquid--phase turbulent structural parameter both in the jet effective region and in the tubular region inside the draft tube were discussed.
文摘The control system of a catalytic flow reversal reactor (CFRR) for the mitigation of ventilation air methane was investigated. A one-dimensional heteroge- neous model with a logic-based controller was applied to simulate the CFRR. The simulation results indicated that the controller developed in this work performs well under normal conditions. Air dilution and auxiliary methane injection are effective to avoid the catalyst overheating and reaction extinction caused by prolonged rich and lean feed conditions, respectively. In contrast, the reactor is prone to lose control by adjusting the switching time solely. Air dilution exhibits the effects of two contradictory aspects on the operation of CFRR, i.e., cooling the bed and accumulating heat, though the former is in general more prominent. Lowering the reference temperature for flow reversal can decrease the bed temperature and benefit stable operation under rich methane feed condition.