期刊文献+
共找到3,545篇文章
< 1 2 178 >
每页显示 20 50 100
Impacts of Climate Change on Seawater Temperature and Total Dissolved Solids: Challenges and Sustainable Solutions for Reverse Osmosis Desalination in the Arabian Gulf Region
1
作者 Ahmed Al Kubaish Jamal Salama 《Computational Water, Energy, and Environmental Engineering》 2024年第1期86-93,共8页
This article examines the influence of seawater temperature and total dissolved solids (TDS) on reverse osmosis (RO) desalination in the Arabian Gulf region, with a focus on the impact of climate change. The study hig... This article examines the influence of seawater temperature and total dissolved solids (TDS) on reverse osmosis (RO) desalination in the Arabian Gulf region, with a focus on the impact of climate change. The study highlights the changes in seawater temperature and TDS levels over the years and discusses their effects on the efficiency and productivity of RO desalination plants. It emphasizes the importance of monitoring TDS levels and controlling seawater temperature to optimize water production. The article also suggests various solutions, including intensive pre-treatment, development of high-performance membranes, exploration of alternative water sources, and regulation of discharges into the Gulf, to ensure sustainable water supply in the face of rising TDS levels and seawater temperature. Further research and comprehensive monitoring are recommended to understand the implications of these findings and develop effective strategies for the management of marine resources in the Arabian Gulf. 展开更多
关键词 Climate Change TEMPERATURE reverse osmosis Seawater Total Dissolved Solids DESALINATION
下载PDF
Performance of Nanofiltration (NF) and Low Pressure Reverse Osmosis (LPRO) Membranes in the Removal of Fluorine and Salinity from Brackish Drinking Water 被引量:1
2
作者 Courfia K. Diawara Saidou N. Diop +2 位作者 Mouhamadou A. Diallo Michel Farcy André Deratani 《Journal of Water Resource and Protection》 2011年第12期912-917,共6页
Certain areas in Senegal have a serious problem of high fluoride and salinity in underground water because of soil properties. This water currently used for drink has a bad taste on consumption and caused diseases lik... Certain areas in Senegal have a serious problem of high fluoride and salinity in underground water because of soil properties. This water currently used for drink has a bad taste on consumption and caused diseases like dental fluorosis and skeletal fluorosis. A membrane filtration plant constructed by Pall Corporation was improved through nanofiltration (NF) and Low Pressure Reverse Osmosis (LPRO). Both NF and LPRO membranes were shown applicable for salinity and fluoride ions removal from brackish and high fluorinated drinking water in a remote community. The NF membrane has given a fluorine retention rate varying between 63.3% and 71% while the LPRO membrane allow to reach 97 to 98.9% for fluorine rejection. Highest salinity rejection rates expressed through conductivity measurements are around 46% and 97% for respectively NF and LPRO. 展开更多
关键词 DESALINATION and BRACKISH Water FLUORINE NANOFILTRATION reverse osmosis
下载PDF
Research Progress of Brackish Water Desalination by Reverse Osmosis 被引量:1
3
作者 Pan Zhang Jingtao Hu +1 位作者 Wei Li Houbo Qi 《Journal of Water Resource and Protection》 2013年第3期304-309,共6页
Brackish water (BW) desalination is a primary path to relieve the shortage of water. As one of the BW desalination methods, reverse osmosis (RO) technology has advantage for both technology and process procedure. The ... Brackish water (BW) desalination is a primary path to relieve the shortage of water. As one of the BW desalination methods, reverse osmosis (RO) technology has advantage for both technology and process procedure. The expounding of this research studied or reviewed recent years, reverse osmosis membrane, energy recovery, new energy and application technology in BW desalination of RO at home and abroad. Wind power and solar energy can be combined with energy recovery device for RO. The research also explains that BW desalination by RO is practical and feasible in some areas in China. 展开更多
关键词 BRACKISH WATER reverse osmosis DESALINATION NEW ENERGY
下载PDF
A Pilot-scale Demonstration of Reverse Osmosis Unit for Treatment of Coal-bed Methane Co-produced Water and Its Modeling 被引量:1
4
作者 钱智 刘新春 +2 位作者 余志晟 张洪勋 琚宜文 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2012年第2期302-311,共10页
This study presents the first demonstration project in China for treatment of coal-bed methane(CBM) co-produced water and recycling.The work aims to provide a research and innovation base for solving the pollution pro... This study presents the first demonstration project in China for treatment of coal-bed methane(CBM) co-produced water and recycling.The work aims to provide a research and innovation base for solving the pollution problem of CBM extraction water.The reverse osmosis(RO) unit is applied to the treatment of CBM co-produced water.The results indicate that system operation is stable,the removal efficiency of the total dissolved solids(TDS) is as high as 97.98%,and Fe,Mn,and F-are almost completely removed.There is no suspended solids(SS) detected in the treated water.Furthermore,a model for the RO membrane separation process is developed to describe the quantitative relationship between key physical quantities-membrane length,flow velocity,salt concentration,driving pressure and water recovery rate,and the water recovery restriction equation based on mass balance is developed.This model provides a theoretical support for the RO system design and optimization.The TDS in the CBM co-produced water are removed to meet the "drinking water standards" and "groundwater quality standards" of China and can be used as drinking water,irrigation water,and livestock watering.In addition,the cost for treatment of CBM co-produced water is assessed,and the RO technology is an efficient and cost-effective treatment method to remove pollutants. 展开更多
关键词 coal-bed methane co-produced water high salt pretreatment process mass balance reverse osmosis
下载PDF
Deep Learning Based Model Predictive Control for a Reverse Osmosis Desalination Plant 被引量:1
5
作者 Divas Karimanzira Thomas Rauschenbach 《Journal of Applied Mathematics and Physics》 2020年第12期2713-2731,共19页
Reverse Osmosis (RO) desalination plants are highly nonlinear multi-input-multioutput systems that are affected by uncertainties, constraints and some physical phenomena such as membrane fouling that are mathematicall... Reverse Osmosis (RO) desalination plants are highly nonlinear multi-input-multioutput systems that are affected by uncertainties, constraints and some physical phenomena such as membrane fouling that are mathematically difficult to describe. Such systems require effective control strategies that take these effects into account. Such a control strategy is the nonlinear model predictive (NMPC) controller. However, an NMPC depends very much on the accuracy of the internal model used for prediction in order to maintain feasible operating conditions of the RO desalination plant. Recurrent Neural Networks (RNNs), especially the Long-Short-Term Memory (LSTM) can capture complex nonlinear dynamic behavior and provide long-range predictions even in the presence of disturbances. Therefore, in this paper an NMPC for a RO desalination plant that utilizes an LSTM as the predictive model will be presented. It will be tested to maintain a given permeate flow rate and keep the permeate concentration under a certain limit by manipulating the feed pressure. Results show a good performance of the system. 展开更多
关键词 DESALINATION Model Predictive Control Artificial Intelligence Long Short Term Memory Neural Network reverse osmosis
下载PDF
Microbial Removal from Secondary Treated Wastewater Using a Hybrid System of Ultrafiltration and Reverse Osmosis 被引量:1
6
作者 Jehad Abbadi Rinad Saleh +5 位作者 Sameh Nusseibeh Muhannad Qurie Mustafa Khamis Rafik Karaman LauraScrano Sabino Aurelio Bufo 《Journal of Environmental Science and Engineering(A)》 2012年第7期853-869,共17页
The efficiency of advanced membranes towards removal of general and specific microbes from wastewater was investigated. The treatment included a subsequent system of activated sludge, ultrafiltration (hollow fibre me... The efficiency of advanced membranes towards removal of general and specific microbes from wastewater was investigated. The treatment included a subsequent system of activated sludge, ultrafiltration (hollow fibre membranes with 100 kDa cut-off, and spiral wound membranes with 20 kDa cut-off), and RO (reverse osmosis). The removal evaluation of screened microbes present in treated wastewater showed that hollow fibre membrane rejected only 1 log (90% rejection) of the TPC (total microbial count), TC (total coliforms), and FC (faecal coliforms). A higher effectiveness was observed with spiral wound, removing 2-3 logs (99%-99.9%) of TPC and complete rejection of TC and FC. The RO system was successful in total rejection of all received bacteria. The removal evaluation of inoculated specific types of bacteria showed that the hollow membranes removed 2 logs (99%) of inoculated E. coli (10^7-10^8 cfu/mL inoculum), 2-3 logs (99%-99.9%) of Enterococus spp. (10^7-10^10 cfu/mL inoculum), 1-2 logs (90%-99%) of Salmonella (10^8-10^10 cfu/mL inoculum) and 1-2 logs (90%-99%) of Shigella (10^5-10^6 cfu/mL inoculum). The spiral wound was significantly efficient in rejecting further 3 logs of E. coil, 5 logs of Enterococus spp., 4 logs of Salmonella, and a complete rejection of all received bacteria was accomplished by RO membrane. The results indicate that Gram positive bacteria were removed much more efficiently compared to the Gram negative ones, the rationale behind such behaviour is based on cell walls elasticity. 展开更多
关键词 Wastewater treatment microbial load removal ULTRAFILTRATION reverse osmosis filtration technology microbial fouling.
下载PDF
Application of Activated Carbon in the Removal of COD in Zero-emission Reverse Osmosis Concentrate
7
作者 Li Jun Liu Xiaojing +2 位作者 Tian Lei Zhu Haichen Li Mengjun 《Meteorological and Environmental Research》 CAS 2019年第6期75-78,共4页
For further reducing the load of subsequent processing,the activated carbon adsorption method was used to remove organic compounds from reverse osmosis water concentrate,and the influence of variety of activated carbo... For further reducing the load of subsequent processing,the activated carbon adsorption method was used to remove organic compounds from reverse osmosis water concentrate,and the influence of variety of activated carbon,residence time,dosage of activated carbon and p H on the removal rate of COD was studied.The results show that the removal rate of COD was up to 61.8%under the conditions of influent p H=6,400 ml water,30 min of residence time and 1.5 g of 2#activated carbon as the adsorbent.In the dynamic adsorption experiment and field application,the adsorption tower was loaded with 40 tons of 2#activated carbon,and the inflow of influent water was 100 m^3/h;average COD was 142 mg/L,and p H was 8.04;the residence time was 36 min.Under the above conditions,when effluent COD was less than 60 mg/L,the adsorption capacity of activated carbon was up to 1330 m^3/t. 展开更多
关键词 reverse osmosis CONCENTRATE COD ACTIVATED carbon ADSORPTION performance
下载PDF
Highly permeable reverse osmosis membranes incorporated with hydrophilic polymers of intrinsic microporosity via interfacial polymerization
8
作者 Jing Dou Shuo Han +3 位作者 Saisai Lin Zhikan Yao Lian Hou Lin Zhang 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2022年第5期194-202,共9页
Enhancing the water permeation while maintaining high salt rejection of existing reverse osmosis(RO)membranes remains a considerable challenge.Herein,we proposed to introduce polymer of intrinsic microporosity,PIM-1,i... Enhancing the water permeation while maintaining high salt rejection of existing reverse osmosis(RO)membranes remains a considerable challenge.Herein,we proposed to introduce polymer of intrinsic microporosity,PIM-1,into the selective layer of reverse osmosis membranes to break the trade-off effect between permeability and selectivity.A water-soluble a-LPIM-1 of low-molecular-weight and hydroxyl terminals was synthesized.These designed characteristics endowed it with high solubility and reactivity.Then it was mixed with m-phenylenediamine and together served as aqueous monomer to react with organic monomer of trimesoyl chloride via interfacial polymerization.The characterization results exhibited that more“nodule”rather than“leaf”structure formed on RO membrane surface,which indicated that the introduction of the high free-volume of a-LPIM-1 with three dimensional twisted and folded structure into the selective layer effectively caused the frustrated packing between polymer chains.In virtue of this effect,even with reduced surface roughness and unchanged layer thickness,the water permeability of prepared reverse osmosis membranes increased 2.1 times to 62.8 L·m^(-2)·h^(-1) with acceptable Na Cl rejection of 97.6%.This attempt developed a new strategy to break the trade-off effect faced by traditional polyamide reverse osmosis membranes. 展开更多
关键词 PIM-1 Intrinsic microporosity reverse osmosis Interfacial polymerization Trade-off
下载PDF
An Air Operated Domestic Brackish Water Reverse Osmosis Plant: Economically Sustainable Solution for Safe Drinking Water Supply for Chronic Kidney Disease of Unknown Etiology Affected Areas in Sri Lanka
9
作者 Mudiyanselage C. P. Dissanayake 《Journal of Water Resource and Protection》 2020年第11期911-920,共10页
Chronic Kidney Disease with unknown etiology (CKDu) is one of the crucial health issues in North Central, Uva, North Western, North, Central, and Eastern Provinces of Sri Lanka and incapacitates the kidney function. T... Chronic Kidney Disease with unknown etiology (CKDu) is one of the crucial health issues in North Central, Uva, North Western, North, Central, and Eastern Provinces of Sri Lanka and incapacitates the kidney function. The main source for the CKDu has not yet been identified, though many scientists believed that the number of certain drinking water quality parameters is changed due to the contamination of water sources by agricultural activities. Hence, the government of Sri Lanka introduces electrically driven Brackish Water Reverse Osmosis (BWRO) plants with a capacity of 10 tones/day to supply safe drinking water for the impacted community though it is an energy-intensive process. Concurrently, a smaller version of an electrically driven BWRO plant was introduced to the rural farming community for their domestic use. However, it was not practically worked out due to various reasons such as high cost, unavailability of electrical power supply for those villages. In this study, an economical air operated domestic use BWRO plant with zero-emission was designed. This anticipated system significantly reduces the government expenditures to subsidize the water purification cost by 50% of the existing expenses. Besides, simple payback time was found to be 2.5 years, and the benefit-cost ratio to be more than 1. Evaluating the performance with the conventional values, it comprehends with more sustainable and economically viable system compared to the existing method of water purification. 展开更多
关键词 Brackish Water reverse osmosis Membrane Chronic Kidney with Disease Unknown Aetiology Safe Drinking Water Sri Lanka
下载PDF
Piloting Study on Biofouling Control of Reverse Osmosis System in Steel Mill Wastewater Reuse
10
作者 Cheng Yang Tina Arrowood Jon Johnson 《Journal of Environmental Science and Engineering(A)》 2017年第9期453-461,共9页
The biofouling of RO (Reverse Osmosis) system is one of the most common problems in highly contaminated demineralization and wastewater reuse system. The biological fouling occurs due to the bacteria growth and prol... The biofouling of RO (Reverse Osmosis) system is one of the most common problems in highly contaminated demineralization and wastewater reuse system. The biological fouling occurs due to the bacteria growth and proliferation under nutritive environment, resulting in a dramatic increase of dP (differential pressure) in the RO system, which requires frequent system shutdown for cleaning. This paper discusses the effectiveness of low-dP RO element and periodic flushing on the biofouling scheme of industrial steel mill wastewater reuse system. The low-dP RO element is able to provide low RO system dP, which is expressed to be lower biofouling starting point during the industrial system operation. However, the periodic flushing utilizes fresh water to remove the biofilm deposit along with feed channel. The long term operation performance demonstrated strong caustic is effective in removing the biofilm and recovering RO system performance. It is experimentally validated that, in the case of a high biofouling environment, low-dP RO element and periodic flushing is able to extend the cleaning cycles by 36.6% and 11.4%, respectively. Meanwhile, a joint application of both methods is proven to improve the biofouling control and extend the cleaning cycle by 62.5%, as compared to standard RO technology. 展开更多
关键词 ro reverse osmosis BIOFOULING MEMBRANE dP (Differential Pressure) wastewater reuse
下载PDF
Design and Operation of Small-Scale Photovoltaic-Driven Reverse Osmosis (PV-RO) Desalination Plant for Water Supply in Rural Areas
11
作者 Fawzi Banat Hazim Qiblawey Qais Al- Nasser 《Computational Water, Energy, and Environmental Engineering》 2012年第3期31-36,共6页
The alarming water and energy crisis in many regions of the world can be eased by combining renewable energy with desalination technologies. The ADIRA project funded by the EU looked for demonstrating the feasibility ... The alarming water and energy crisis in many regions of the world can be eased by combining renewable energy with desalination technologies. The ADIRA project funded by the EU looked for demonstrating the feasibility of water desalination in areas around the Mediterranean by installing a number of autonomous desalination systems (ADS) which are able to convert brackish or seawater into potable water for the needs of small communities. Within the activities of the ADIRA project a reverse osmosis unit powered by photovoltaic electricity was installed in a village in the northern part of Jordan with a capacity of 0.5 m3/day. The system was composed of a softener, reverse osmosis unit, PV panels (432 Wp) and storage batteries. Residential type “OSMONICS” membrane (TFM-100) was utilized in the RO unit. Field tests were performed on brackish water (1700 mg/L total dissolved solids (TDS)). This paper sheds the light on the process flow diagram, sizing of the system main components and presents some of the results obtained. 展开更多
关键词 reverse osmosis Water FILTERS Ion EXCHANGE System Membranes Carbon FILTERS
下载PDF
Isolation of natural organic matter from fresh waters using reverse osmosis and electrodialysis
12
作者 Jean F. Koprivnjak E. Michael Perdue Peter H. Pfromm 《Chinese Journal Of Geochemistry》 EI CAS 2006年第B08期268-268,共1页
关键词 淡水 有机物质 电渗析 渗透作用 硫酸盐
下载PDF
Optimizing Reverse Osmosis Membrane Parameters through the Use of the Solution-Diffusion Model: A Review
13
作者 Farah Z. Najdawi Kaleb T. Neptune 《Engineering(科研)》 2022年第1期9-32,共24页
When designing and building an optimal reverse osmosis (RO) desalination plant, it is important that engineers select effective membrane parameters for optimal application performance. The membrane selection can deter... When designing and building an optimal reverse osmosis (RO) desalination plant, it is important that engineers select effective membrane parameters for optimal application performance. The membrane selection can determine the success or failure of the entire desalination operation. The objective of this work is to review available membrane types and design parameters that can be selected for optimal application to yield the highest potential for plant operations. Factors such as osmotic pressure, water flux values, and membrane resistance will all be evaluated as functions of membrane parameters. The optimization of these parameters will be determined through the deployment of the solution-diffusion model devolved from the Maxwell Stephan Equation. When applying the solution-diffusion model to evaluate RO membranes, the Maxwell Stephan Equation provides mathematical analysis through which the steps for mass transfer through a RO membrane may be observed and calculated. A practical study of the use of the solution-diffusion model will be discussed. This study uses the diffusion-solution model to evaluate the effectiveness of a variety of Toray RO membranes. This practical application confirms two principal hypotheses when using the diffusion-solution model for membrane evaluation. First, there is an inverse relationship between membrane and water flux rate. Second, there is a proportional linear relationship between overall water flux rate and the applied pressure across a membrane. 展开更多
关键词 reverse osmosis Membrane Solution-Diffusion Model Maxwell Stephan Equation Desalination Plants Membrane Optimization
下载PDF
Improvement of PV/T Based Reverse Osmosis Desalination Plant Performances Using Fuzzy Logic Controller
14
作者 Mahmoud Ammous Sana Charfi +1 位作者 Ahmad Harb Maher Chaabene 《International Journal of Modern Nonlinear Theory and Application》 2016年第1期11-27,共17页
Photovoltaic based reverse osmosis desalination systems (PV/RO) present an effective method of water desalination especially in remote areas. The increase of the feed water temperature leads to an amelioration of the ... Photovoltaic based reverse osmosis desalination systems (PV/RO) present an effective method of water desalination especially in remote areas. The increase of the feed water temperature leads to an amelioration of the plant performances. Photovoltaic Thermal Collector (PV/T) represents an ideal power source as it provides both electric and thermal energies for the reverse osmosis process. Nevertheless, PV/T based RO plants should be controlled in order to solve operation problems related to electrical efficiency, reverse osmosis membrane, produced water and the rejected salts. This paper suggests a fuzzy logic controller for the flow rate of the circulating fluid into the PV/T collectors so as to ameliorate the system performances. The designed controller has improved the PV/T field electrical efficiency and preserved the reverse osmosis membrane which upgrades the system productivity. LABVIEW software is used to simulate the controlled system and validate the effectiveness of the controller. 展开更多
关键词 PV/T Collector reverse osmosis CONTroL Fuzzy Logic Controller
下载PDF
Performance of Nanofiltration and Reverse Osmosis Membranes in Metal Effluent Treatment 被引量:19
15
作者 刘飞妮 张国亮 +1 位作者 孟琴 章宏梓 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2008年第3期441-445,共5页
The performance of different nanofiltration (NF) and reverse osmosis (RO) membranes was studied in treating the toxic metal effluent from metallurgical industry. The characteristics and filtration behavior of the ... The performance of different nanofiltration (NF) and reverse osmosis (RO) membranes was studied in treating the toxic metal effluent from metallurgical industry. The characteristics and filtration behavior of the processes including the wastewater flux, salt rejection and ion rejection versus operating pressure were evaluated. Then the wastewater flux of RO membrane was compared with theoretical calculation using mass transfer models, and good consistency was observed. It was found that a high rejection rate more than 95% of metal ions and a low Chemical Oxygen Demand (COD) value of 10 mg·L^-1 in permeate could be achieved using the RO composite membrane, while the NF rejection of the salt could be up to 78.9% and the COD value in the permeate was 35 mg·L^-1. The results showed that the product water by both NF and RO desalination satisfied the State Reutilization Qualification, but NF would be more suitable for large-scale industrial practice, which offered significantly higher permeate flux at low operating pressure. 展开更多
关键词 NANOFILTRATION reverse osmosis metal effluent REUSE
下载PDF
Substrate matters:The influences of substrate layers on the performances of thin-film composite reverse osmosis membranes 被引量:5
16
作者 Jie Li,Mingjie Wei YongWang 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2017年第11期1676-1684,共9页
Thin-film composite(TFC) reverse osmosis(RO) membranes are playing the dominating role in desalination.Tremendous efforts have been put in the studies on the polyamide selective layers. However, the effect of the subs... Thin-film composite(TFC) reverse osmosis(RO) membranes are playing the dominating role in desalination.Tremendous efforts have been put in the studies on the polyamide selective layers. However, the effect of the substrate layers is far less concerned. In this review, we summarize the works that consider the impacts of the substrates, including pore sizes, surface hydrophilicity, on the processes of interfacial polymerization and consequently on the morphologies of the active layers and on final RO performances of the composite membranes. All the works indicate that the pore sizes and surface hydrophilicity of the substrate evidently influence the RO performances of the composite membranes. Unfortunately, we find that the observations and understandings on the substrate effect are frequently varied from case to case because of the lack of substrates with uniform pores and surface chemistries. We suggest using track-etched membranes or anodized alumina membranes having relatively uniform pores and functionalizable pore walls as model substrates to elucidate the substrate effect.Moreover, we argue that homoporous membranes derived from block copolymers have the potential to be used as substrates for the large-scale production of high-performances TFC RO membranes. 展开更多
关键词 reverse osmosis Thin-film composite Interfacial polymerization Homoporous membranes Substrate effect
下载PDF
Inhibition of CaCO_3 Scaling in Reverse Osmosis System by Zinc Ion 被引量:7
17
作者 杨庆峰 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2006年第2期178-183,共6页
Scaling of reverse osmosis (RO) membrane surface is one of the main problems in desalination proc- esses. To mitigate scales, organic anti-scalants are often used. If the dosages of anti-scalants are reduced, by using... Scaling of reverse osmosis (RO) membrane surface is one of the main problems in desalination proc- esses. To mitigate scales, organic anti-scalants are often used. If the dosages of anti-scalants are reduced, by using other much cheaper scale inhibitors, RO running cost will decrease greatly. The present paper investigated the inhi- bition of CaCO3 precipitation by zinc ions in RO system. The results show that the zinc ion concentration of 2mg?L-1 was able to exert a marked suppression effect on both bulk precipitation of CaCO3 and on membrane scaling on waters of moderate hardness. 展开更多
关键词 reverse osmosis DESALINATION scaling inhibition metal impurities
下载PDF
Study of reverse osmosis membranes fouling by inorganic salts and colloidal particles during seawater desalination 被引量:5
18
作者 Santiago Gutiérrez Ruiz Juan Antonio López-Ramírez +2 位作者 Mohammed Hassani Zerrouk Agata Egea-Corbacho Lopera JoséMaría Quiroga Alonso 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2020年第3期733-742,共10页
Fouling phenomenon is considered among the major reasons that cause significant increase of operating cost of desalination plants equipped with reverse osmosis(RO)membranes.This phenomenon is studied in the present wo... Fouling phenomenon is considered among the major reasons that cause significant increase of operating cost of desalination plants equipped with reverse osmosis(RO)membranes.This phenomenon is studied in the present work in the case of RO polyamide aromatic membranes using model seawater containing inorganic salts and colloidal compounds.Different solubility conditions of CaCO3 and CaSO4 were applied to study RO performances with and without colloid presence.During experiments,the membrane permeate fluxes were continuously monitored.Moreover,studies of chemical composition,structure,and morphology of the materials deposited on the membrane surface were conducted using energy dispersive microanalysis(EDS)X-ray diffraction and scanning electronic microscopy(SEM).Results show that in conditions of calcium carbonate oversaturation there is a reduction in the permeate flow of 11.2%due to fouling of the membrane by the precipitation of this compound.While in the same conditions of calcium sulphate oversaturation the reduction of the flow is 5%,so we can conclude that in conditions of oversaturation of both salts,calcium carbonate produces a greater fouling of the membrane that in its view causes greater decrease in the flow of permeate.All this based on the results of the test with both salts in oversaturated conditions.Resulting in the formation of calcite and gypsum crystals onto the membranes as XRD analyses stated.Additional presence of colloidal silica in those conditions intensifies strongly the fouling,leading until to 24.1%of permeate flux decrease. 展开更多
关键词 reverse osmosis DESALINATION FOULING Seawater SCALING
下载PDF
Energy Recovery Device with a Fluid Switcher for Seawater Reverse Osmosis System 被引量:7
19
作者 孙家喜 王越 +1 位作者 徐世昌 王世昌 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2008年第2期329-332,共4页
Energy recovery device (ERD) is an important part of the seawater reverse osmosis (SWRO) desalination system. There are principally two kinds of ERDs, the centrifugal type and the positive displacement (PD) type... Energy recovery device (ERD) is an important part of the seawater reverse osmosis (SWRO) desalination system. There are principally two kinds of ERDs, the centrifugal type and the positive displacement (PD) type. The PD type is of extensive concern and is preferred in large-scale plants. In this article, an innovative fluid switcher was presented and a two-cylinder hydraulic energy recovery unit with a lab-scale fluid switcher was set up. Tap water was used as the working medium instead of the actual seawater and brine in SWRO desalination plants. Under steady state operating conditions, the experimental results were obtained on the variations of the pressure and flow rate to and from the energy recovery unit. The hydraulic recovery efficiency (En) of the energy recovery unit with the fluid switcher reached up to 76.83%. 展开更多
关键词 energy recovery seawater reverse osmosis work exchanger fluid switcher
下载PDF
Recent advances in nanofiltration,reverse osmosis membranes and their applications in biomedical separation field 被引量:4
20
作者 Kai Zhang Huan-Huan Wu +3 位作者 Hui-Qian Huo Yan-Li Ji Yong Zhou Cong-Jie Gao 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2022年第9期76-99,共24页
In the face of human society's great requirements for health industry,and the much stricter safety and quality standards in the biomedical industry,the demand for advanced membrane separation technologies continue... In the face of human society's great requirements for health industry,and the much stricter safety and quality standards in the biomedical industry,the demand for advanced membrane separation technologies continues to rapidly grow in the world.Nanofiltration(NF)and reverse osmosis(RO)as the highefficient,low energy consumption,and environmental friendly membrane separation techniques,show great promise in the application of biomedical separation field.The chemical compositions,microstructures and surface properties of NF/RO membranes determine the separation accuracy,efficiency and operation cost in their applications.Accordingly,recent studies have focused on tuning the structures and tailoring the performance of NF/RO membranes via the design and synthesis of various advanced membrane materials,and exploring universal and convenient membrane preparation strategies,with the objective of promoting the better and faster development of NF/RO membrane separation technology in the biomedical separation field.This paper reviews the recent studies on the NF/RO membranes constructed with various materials,including the polymeric materials,different dimensional inorganic/organic nanomaterials,porous polymeric materials and metal coordination polymers,etc.Moreover,the influence of membrane chemical compositions,interior microstructures,and surface characteristics on the separation performance of NF/RO membranes,are comprehensively discussed.Subsequently,the applications of NF/RO membranes in biomedical separation field are systematically reported.Finally,the perspective for future challenges of NF/RO membrane separation techniques in this field is discussed. 展开更多
关键词 NANOFILTRATION reverse osmosis MEMBRANE SEPARATION BIOMEDICAL
下载PDF
上一页 1 2 178 下一页 到第
使用帮助 返回顶部