Chronic Kidney Disease with unknown etiology (CKDu) is one of the crucial health issues in North Central, Uva, North Western, North, Central, and Eastern Provinces of Sri Lanka and incapacitates the kidney function. T...Chronic Kidney Disease with unknown etiology (CKDu) is one of the crucial health issues in North Central, Uva, North Western, North, Central, and Eastern Provinces of Sri Lanka and incapacitates the kidney function. The main source for the CKDu has not yet been identified, though many scientists believed that the number of certain drinking water quality parameters is changed due to the contamination of water sources by agricultural activities. Hence, the government of Sri Lanka introduces electrically driven Brackish Water Reverse Osmosis (BWRO) plants with a capacity of 10 tones/day to supply safe drinking water for the impacted community though it is an energy-intensive process. Concurrently, a smaller version of an electrically driven BWRO plant was introduced to the rural farming community for their domestic use. However, it was not practically worked out due to various reasons such as high cost, unavailability of electrical power supply for those villages. In this study, an economical air operated domestic use BWRO plant with zero-emission was designed. This anticipated system significantly reduces the government expenditures to subsidize the water purification cost by 50% of the existing expenses. Besides, simple payback time was found to be 2.5 years, and the benefit-cost ratio to be more than 1. Evaluating the performance with the conventional values, it comprehends with more sustainable and economically viable system compared to the existing method of water purification.展开更多
Octanoic acid(OA) was selected to represent fatty acids in effluent organic matter(EOM). The effects of feed solution(FS) properties, membrane orientation and initial permeate flux on OA fouling in forward osmo...Octanoic acid(OA) was selected to represent fatty acids in effluent organic matter(EOM). The effects of feed solution(FS) properties, membrane orientation and initial permeate flux on OA fouling in forward osmosis(FO) were investigated. The undissociated OA formed a cake layer quickly and caused the water flux to decline significantly in the initial 0.5 hr at unadjusted p H 3.56; while the fully dissociated OA behaved as an anionic surfactant and promoted the water permeation at an elevated p H of 9.00. Moreover, except at the initial stage, the sudden decline of water flux(meaning the occurrence of severe membrane fouling) occurred in two conditions: 1.0.5 mmol/L Ca2+, active layer facing draw solution(AL-DS) and 1.5 mol/L Na Cl(DS); 2. No Ca2+,active layer-facing FS(AL-FS) and 4 mol/L Na Cl(DS). This demonstrated that cake layer compaction or pore blocking occurred only when enough foulants were absorbed into the membrane surface, and the water permeation was high enough to compact the deposit inside the porous substrate. Furthermore, bovine serum albumin(BSA) was selected as a co-foulant.The water flux of both co-foulants was between the fluxes obtained separately for the two foulants at p H 3.56, and larger than the two values at p H 9.00. This manifested that, at p H 3.56,BSA alleviated the effect of the cake layer caused by OA, and OA enhanced BSA fouling simultaneously; while at p H 9.00, the mutual effects of OA and BSA eased the membrane fouling.展开更多
Polyethylene terephthalate mesh(PET) enhanced cellulose acetate membranes were fabricated via a phase inversion process. The membrane fabrication parameters that may affect the membrane performance were systematical...Polyethylene terephthalate mesh(PET) enhanced cellulose acetate membranes were fabricated via a phase inversion process. The membrane fabrication parameters that may affect the membrane performance were systematically evaluated including the concentration and temperature of the casting polymer solution and the temperature and time of the evaporation, coagulation and annealing processes. The water permeability and reverse salt flux were measured in forward osmosis(FO) mode for determination of the optimal membrane fabrication conditions. The optimal FO membrane shows a typical asymmetric sandwich structure with a mean thickness of about 148.2 μm. The performance of the optimal FO membrane was tested using 0.2 mol/L Na Cl as the feed solution and 1.5 mol/L glucose as the draw solution. The membrane displayed a water flux of 3.47 L/(m2·hr) and salt rejection of95.48% in FO mode. While in pressure retarded osmosis(PRO) mode, the water flux was4.74 L/(m2·hr) and salt rejection 96.03%. The high ratio of water flux in FO mode to that in PRO mode indicates that the fabricated membrane has a lower degree of internal concentration polarization than comparable membranes.展开更多
文摘Chronic Kidney Disease with unknown etiology (CKDu) is one of the crucial health issues in North Central, Uva, North Western, North, Central, and Eastern Provinces of Sri Lanka and incapacitates the kidney function. The main source for the CKDu has not yet been identified, though many scientists believed that the number of certain drinking water quality parameters is changed due to the contamination of water sources by agricultural activities. Hence, the government of Sri Lanka introduces electrically driven Brackish Water Reverse Osmosis (BWRO) plants with a capacity of 10 tones/day to supply safe drinking water for the impacted community though it is an energy-intensive process. Concurrently, a smaller version of an electrically driven BWRO plant was introduced to the rural farming community for their domestic use. However, it was not practically worked out due to various reasons such as high cost, unavailability of electrical power supply for those villages. In this study, an economical air operated domestic use BWRO plant with zero-emission was designed. This anticipated system significantly reduces the government expenditures to subsidize the water purification cost by 50% of the existing expenses. Besides, simple payback time was found to be 2.5 years, and the benefit-cost ratio to be more than 1. Evaluating the performance with the conventional values, it comprehends with more sustainable and economically viable system compared to the existing method of water purification.
文摘Octanoic acid(OA) was selected to represent fatty acids in effluent organic matter(EOM). The effects of feed solution(FS) properties, membrane orientation and initial permeate flux on OA fouling in forward osmosis(FO) were investigated. The undissociated OA formed a cake layer quickly and caused the water flux to decline significantly in the initial 0.5 hr at unadjusted p H 3.56; while the fully dissociated OA behaved as an anionic surfactant and promoted the water permeation at an elevated p H of 9.00. Moreover, except at the initial stage, the sudden decline of water flux(meaning the occurrence of severe membrane fouling) occurred in two conditions: 1.0.5 mmol/L Ca2+, active layer facing draw solution(AL-DS) and 1.5 mol/L Na Cl(DS); 2. No Ca2+,active layer-facing FS(AL-FS) and 4 mol/L Na Cl(DS). This demonstrated that cake layer compaction or pore blocking occurred only when enough foulants were absorbed into the membrane surface, and the water permeation was high enough to compact the deposit inside the porous substrate. Furthermore, bovine serum albumin(BSA) was selected as a co-foulant.The water flux of both co-foulants was between the fluxes obtained separately for the two foulants at p H 3.56, and larger than the two values at p H 9.00. This manifested that, at p H 3.56,BSA alleviated the effect of the cake layer caused by OA, and OA enhanced BSA fouling simultaneously; while at p H 9.00, the mutual effects of OA and BSA eased the membrane fouling.
基金the financial support of the National Natural Science Foundation of China(Nos.51378491,21307149)
文摘Polyethylene terephthalate mesh(PET) enhanced cellulose acetate membranes were fabricated via a phase inversion process. The membrane fabrication parameters that may affect the membrane performance were systematically evaluated including the concentration and temperature of the casting polymer solution and the temperature and time of the evaporation, coagulation and annealing processes. The water permeability and reverse salt flux were measured in forward osmosis(FO) mode for determination of the optimal membrane fabrication conditions. The optimal FO membrane shows a typical asymmetric sandwich structure with a mean thickness of about 148.2 μm. The performance of the optimal FO membrane was tested using 0.2 mol/L Na Cl as the feed solution and 1.5 mol/L glucose as the draw solution. The membrane displayed a water flux of 3.47 L/(m2·hr) and salt rejection of95.48% in FO mode. While in pressure retarded osmosis(PRO) mode, the water flux was4.74 L/(m2·hr) and salt rejection 96.03%. The high ratio of water flux in FO mode to that in PRO mode indicates that the fabricated membrane has a lower degree of internal concentration polarization than comparable membranes.