In this paper, we propose a two-grid algorithm for solving the stream function formulation of the stationary Navies-Stokes equations. The algorithm is constructed by reducing the original system to one small, nonlinea...In this paper, we propose a two-grid algorithm for solving the stream function formulation of the stationary Navies-Stokes equations. The algorithm is constructed by reducing the original system to one small, nonlinear system on the coarse mesh space and two similar linear systems (with same stiffness matrix but different right-hand side) on the fine mesh space. The convergence analysis and error estimation of the algorithm are given for the case of conforming elements. Furthermore, the Mgorithm produces a numerical solution with the optimal asymptotic H^2-error. Finally, we give a numerical illustration to demonstrate the effectiveness of the two-grid algorithm for solving the Navier-Stokes equations.展开更多
This paper extends the results of Matthies, Skrzypacz, and Tubiska for the Oseen problem to the Navier-Stokes problem. For the stationary incompressible Navier- Stokes equations, a local projection stabilized finite e...This paper extends the results of Matthies, Skrzypacz, and Tubiska for the Oseen problem to the Navier-Stokes problem. For the stationary incompressible Navier- Stokes equations, a local projection stabilized finite element scheme is proposed. The scheme overcomes convection domination and improves the restrictive inf-sup condition. It not only is a two-level approach but also is adaptive for pairs of spaces defined on the same mesh. Using the approximation and projection spaces defined on the same mesh, the scheme leads to much more compact stencils than other two-level approaches. On the same mesh, besides the class of local projection stabilization by enriching the approximation spaces, two new classes of local projection stabilization of the approximation spaces are derived, which do not need to be enriched by bubble functions. Based on a special interpolation, the stability and optimal prior error estimates are shown. Numerical results agree with some benchmark solutions and theoretical analysis very well.展开更多
A new full discrete stabilized viscosity method for the transient Navier-Stokes equations with the high Reynolds number (small viscosity coefficient) is proposed based on the pressure projection and the extrapolated...A new full discrete stabilized viscosity method for the transient Navier-Stokes equations with the high Reynolds number (small viscosity coefficient) is proposed based on the pressure projection and the extrapolated trapezoidal rule. The transient Navier-Stokes equations are fully discretized by the continuous equal-order finite elements in space and the reduced Crank-Nicolson scheme in time. The new stabilized method is stable and has many attractive properties. First, the system is stable for the equal-order combination of discrete continuous velocity and pressure spaces because of adding a pres- sure projection term. Second, the artifical viscosity parameter is added to the viscosity coefficient as a stability factor, so the system is antidiffusive. Finally, the method requires only the solution to a linear system at every time step. Stability and convergence of the method is proved. The error estimation results show that the method has a second-order accuracy, and the constant in the estimation is independent of the viscosity coefficient. The numerical results are given, which demonstrate the advantages of the method presented.展开更多
This paper proposes a new nonconforming finite difference streamline diffusion method to solve incompressible time-dependent Navier-Stokes equations with a high Reynolds number. The backwards difference in time and th...This paper proposes a new nonconforming finite difference streamline diffusion method to solve incompressible time-dependent Navier-Stokes equations with a high Reynolds number. The backwards difference in time and the Crouzeix-Raviart (CR) element combined with the P0 element in space are used. The result shows that this scheme has good stabilities and error estimates independent of the viscosity coefficient.展开更多
Data-driven turbulence modeling studies have reached such a stage that the basic framework is settled,but several essential issues remain that strongly affect the performance.Two problems are studied in the current re...Data-driven turbulence modeling studies have reached such a stage that the basic framework is settled,but several essential issues remain that strongly affect the performance.Two problems are studied in the current research:(1)the processing of the Reynolds stress tensor and(2)the coupling method between the machine learning model and flow solver.For the Reynolds stress processing issue,we perform the theoretical derivation to extend the relevant tensor arguments of Reynolds stress.Then,the tensor representation theorem is employed to give the complete irreducible invariants and integrity basis.An adaptive regularization term is employed to enhance the representation performance.For the coupling issue,an iterative coupling framework with consistent convergence is proposed and then applied to a canonical separated flow.The results have high consistency with the direct numerical simulation true values,which proves the validity of the current approach.展开更多
水面起飞性能是水面飞行器的基本性能,也是总体技术的核心,涉及多个学科领域。水陆两栖飞机水面高速滑行水动力性能与排水型船不同,具有速度高、运动复杂等特点,高速滑行时一方面受到较大的水动升力,另一方面受到机翼的升力。结合水陆...水面起飞性能是水面飞行器的基本性能,也是总体技术的核心,涉及多个学科领域。水陆两栖飞机水面高速滑行水动力性能与排水型船不同,具有速度高、运动复杂等特点,高速滑行时一方面受到较大的水动升力,另一方面受到机翼的升力。结合水陆两栖飞机水面高速滑行特点,利用雷诺平均法(Reynolds average navier-stokes, RANS)数值方法和重叠网格技术对水陆两栖飞机全机模型开展数值仿真模拟,分析了自由液面水气分布、机身底部压力分布特征,并将阻力、姿态和升沉与水池模型试验结果进行对比,验证了数值方法的准确性,为水陆两栖飞机静水滑行水动性能数值预报提供技术基础。展开更多
At T-junctions, where hot and cold streams flowing in pipes join and mix, significant temperature fluctuations can be created in very close neighborhood of the pipe walls. The wall temperature fluctuations cause cycli...At T-junctions, where hot and cold streams flowing in pipes join and mix, significant temperature fluctuations can be created in very close neighborhood of the pipe walls. The wall temperature fluctuations cause cyclical thermal stresses which may induce fatigue cracking. Temperature fluctuation is of crucial importance in many engineering applications and especially in nuclear power plants. This is because the phenomenon leads to thermal fatigue and might subsequently result in failure of structural material. Therefore, the effects of temperature fluctuation in piping structure at mixing junctions in nuclear power systems cannot be neglected. In nuclear power plant, piping structure is exposed to unavoidable temperature differences in a bid to maintain plant operational capacity. Tightly coupled to temperature fluctuation is flow turbulence, which has attracted extensive attention and has been investigated worldwide since several decades. The focus of this study is to investigate the effects of injection pipe orientation on flow mixing and temperature fluctuation for fluid flow downstream a T-junction. Computational fluid dynamics (CFD) approach was applied using STAR CCM+ code. Four inclination angles including 0 (90), 15, 30 and 45 degrees were studied and the mixing intensity and effective mixing zone were investigated. K-omega SST turbulence model was adopted for the simulations. Results of the analysis suggest that, effective mixing of cold and hot fluid which leads to reduced and uniform temperature field at the pipe wall boundary, is achieved at 0 (90) degree inclination of the branch pipe and hence may lower thermal stress levels in the structural material of the pipe. Turbulence mixing, pressure drop and velocity distribution were also found to be more appreciable at 0 (90) degree inclination angle of the branch pipe relative to the other orientations studied.展开更多
In this paper, a full discrete local projection stabilized (LPS) method is proposed to solve the optimal control problems of the unsteady Navier-Stokes equations with equal order elements. Convective effects and pre...In this paper, a full discrete local projection stabilized (LPS) method is proposed to solve the optimal control problems of the unsteady Navier-Stokes equations with equal order elements. Convective effects and pressure are both stabilized by using the LPS method. A priori error estimates uniformly with respect to the Reynolds number are obtained, providing the true solutions are sufficient smooth. Numerical experiments are implemented to illustrate and confirm our theoretical analysis.展开更多
The author shows the existence of long-time averages to turbulent solutions of the Navier-Stokes equations and determines the equations satisfied by them, involving a Reynolds stress that is shown to be dissipative.
Quarter circular breakwater (QCB) is a new-type breakwater developed from senti-circular breakwater (SCB). The superstructure of QCB is composed of a quarter circular front wall, a horizontal base slab and a verti...Quarter circular breakwater (QCB) is a new-type breakwater developed from senti-circular breakwater (SCB). The superstructure of QCB is composed of a quarter circular front wall, a horizontal base slab and a vertical rear wall. The width of QCB' s base slab is about half that of SCB, which makes QCB suitable to be used on relatively finn soil foundation. The numerical wave flume based on the Reynolds averaged Navier-Stokes equations for impressible viscosity fluid is adopted in this paper to simulate the hydraulic performances of QCB. Since the geometry of both breakwaters is similar and SCB has been studied in depth, the hydraulic performances of QCB are given in comparison with those of SCB.展开更多
This paper introduces a numerical model for studying the evolution of a periodic wave train, shoaling, and breaking in surf zone. The model can solve the Reynolds averaged Navier-Stokes (RANS) equations for a mean f...This paper introduces a numerical model for studying the evolution of a periodic wave train, shoaling, and breaking in surf zone. The model can solve the Reynolds averaged Navier-Stokes (RANS) equations for a mean flow, and the k-ε equations for turbulence kinetic energy k and turbulence dissipation rate ε. To track a free surface, the volume of fluid (VOF) function, satisfying the advection equation was introduced. In the numerical treatment, third-order upwind difference scheme was applied to the convection terms of the RANS equations in order to reduce the effect of numerical viscosity. The shoaling and breaking processes of a periodic wave train on gently sloping beaches were modeled. The computed wave heights of a sloping beach and the distribution of breaking wave pressure on a vertical wall were compared with laboratory data.展开更多
基金supported by National Foundation of Natural Science under the Grant 11071216
文摘In this paper, we propose a two-grid algorithm for solving the stream function formulation of the stationary Navies-Stokes equations. The algorithm is constructed by reducing the original system to one small, nonlinear system on the coarse mesh space and two similar linear systems (with same stiffness matrix but different right-hand side) on the fine mesh space. The convergence analysis and error estimation of the algorithm are given for the case of conforming elements. Furthermore, the Mgorithm produces a numerical solution with the optimal asymptotic H^2-error. Finally, we give a numerical illustration to demonstrate the effectiveness of the two-grid algorithm for solving the Navier-Stokes equations.
基金Project supported by the National Natural Science Foundation of China (No. 10872085)the Sichuan Science and Technology Project (No. 05GG006-006-2)the Youth Science Foundation of Neijiang Normal University (No. 09NJZ-6)
文摘This paper extends the results of Matthies, Skrzypacz, and Tubiska for the Oseen problem to the Navier-Stokes problem. For the stationary incompressible Navier- Stokes equations, a local projection stabilized finite element scheme is proposed. The scheme overcomes convection domination and improves the restrictive inf-sup condition. It not only is a two-level approach but also is adaptive for pairs of spaces defined on the same mesh. Using the approximation and projection spaces defined on the same mesh, the scheme leads to much more compact stencils than other two-level approaches. On the same mesh, besides the class of local projection stabilization by enriching the approximation spaces, two new classes of local projection stabilization of the approximation spaces are derived, which do not need to be enriched by bubble functions. Based on a special interpolation, the stability and optimal prior error estimates are shown. Numerical results agree with some benchmark solutions and theoretical analysis very well.
基金supported by the Sichuan Science and Technology Project (No.05GG006-006-2)the Research Fund for Introducing Intelligence of Electronic Science and Technology of China
文摘A new full discrete stabilized viscosity method for the transient Navier-Stokes equations with the high Reynolds number (small viscosity coefficient) is proposed based on the pressure projection and the extrapolated trapezoidal rule. The transient Navier-Stokes equations are fully discretized by the continuous equal-order finite elements in space and the reduced Crank-Nicolson scheme in time. The new stabilized method is stable and has many attractive properties. First, the system is stable for the equal-order combination of discrete continuous velocity and pressure spaces because of adding a pres- sure projection term. Second, the artifical viscosity parameter is added to the viscosity coefficient as a stability factor, so the system is antidiffusive. Finally, the method requires only the solution to a linear system at every time step. Stability and convergence of the method is proved. The error estimation results show that the method has a second-order accuracy, and the constant in the estimation is independent of the viscosity coefficient. The numerical results are given, which demonstrate the advantages of the method presented.
基金supported by the National Natural Science Foundation of China(Nos.11271273 and 11271298)
文摘This paper proposes a new nonconforming finite difference streamline diffusion method to solve incompressible time-dependent Navier-Stokes equations with a high Reynolds number. The backwards difference in time and the Crouzeix-Raviart (CR) element combined with the P0 element in space are used. The result shows that this scheme has good stabilities and error estimates independent of the viscosity coefficient.
基金This work was supported by the National Natural Science Foundation of China(91852108,11872230 and 92152301).
文摘Data-driven turbulence modeling studies have reached such a stage that the basic framework is settled,but several essential issues remain that strongly affect the performance.Two problems are studied in the current research:(1)the processing of the Reynolds stress tensor and(2)the coupling method between the machine learning model and flow solver.For the Reynolds stress processing issue,we perform the theoretical derivation to extend the relevant tensor arguments of Reynolds stress.Then,the tensor representation theorem is employed to give the complete irreducible invariants and integrity basis.An adaptive regularization term is employed to enhance the representation performance.For the coupling issue,an iterative coupling framework with consistent convergence is proposed and then applied to a canonical separated flow.The results have high consistency with the direct numerical simulation true values,which proves the validity of the current approach.
文摘水面起飞性能是水面飞行器的基本性能,也是总体技术的核心,涉及多个学科领域。水陆两栖飞机水面高速滑行水动力性能与排水型船不同,具有速度高、运动复杂等特点,高速滑行时一方面受到较大的水动升力,另一方面受到机翼的升力。结合水陆两栖飞机水面高速滑行特点,利用雷诺平均法(Reynolds average navier-stokes, RANS)数值方法和重叠网格技术对水陆两栖飞机全机模型开展数值仿真模拟,分析了自由液面水气分布、机身底部压力分布特征,并将阻力、姿态和升沉与水池模型试验结果进行对比,验证了数值方法的准确性,为水陆两栖飞机静水滑行水动性能数值预报提供技术基础。
文摘At T-junctions, where hot and cold streams flowing in pipes join and mix, significant temperature fluctuations can be created in very close neighborhood of the pipe walls. The wall temperature fluctuations cause cyclical thermal stresses which may induce fatigue cracking. Temperature fluctuation is of crucial importance in many engineering applications and especially in nuclear power plants. This is because the phenomenon leads to thermal fatigue and might subsequently result in failure of structural material. Therefore, the effects of temperature fluctuation in piping structure at mixing junctions in nuclear power systems cannot be neglected. In nuclear power plant, piping structure is exposed to unavoidable temperature differences in a bid to maintain plant operational capacity. Tightly coupled to temperature fluctuation is flow turbulence, which has attracted extensive attention and has been investigated worldwide since several decades. The focus of this study is to investigate the effects of injection pipe orientation on flow mixing and temperature fluctuation for fluid flow downstream a T-junction. Computational fluid dynamics (CFD) approach was applied using STAR CCM+ code. Four inclination angles including 0 (90), 15, 30 and 45 degrees were studied and the mixing intensity and effective mixing zone were investigated. K-omega SST turbulence model was adopted for the simulations. Results of the analysis suggest that, effective mixing of cold and hot fluid which leads to reduced and uniform temperature field at the pipe wall boundary, is achieved at 0 (90) degree inclination of the branch pipe and hence may lower thermal stress levels in the structural material of the pipe. Turbulence mixing, pressure drop and velocity distribution were also found to be more appreciable at 0 (90) degree inclination angle of the branch pipe relative to the other orientations studied.
基金This work is supported by the Natural Science Foundation of China (No. 11271273) and the Scientific Research Foundation of the Education Department of Sichuan Province of China (No.16ZB0300). The authors would like to thank the associate editor and anonymous referees comments to improve the quality of the manuscript.
文摘In this paper, a full discrete local projection stabilized (LPS) method is proposed to solve the optimal control problems of the unsteady Navier-Stokes equations with equal order elements. Convective effects and pressure are both stabilized by using the LPS method. A priori error estimates uniformly with respect to the Reynolds number are obtained, providing the true solutions are sufficient smooth. Numerical experiments are implemented to illustrate and confirm our theoretical analysis.
基金supported by ISFMA,Fudan University,China and CNRS,France
文摘The author shows the existence of long-time averages to turbulent solutions of the Navier-Stokes equations and determines the equations satisfied by them, involving a Reynolds stress that is shown to be dissipative.
基金supported by the National Natural Science Foundation of China(Grant No.50779045)
文摘Quarter circular breakwater (QCB) is a new-type breakwater developed from senti-circular breakwater (SCB). The superstructure of QCB is composed of a quarter circular front wall, a horizontal base slab and a vertical rear wall. The width of QCB' s base slab is about half that of SCB, which makes QCB suitable to be used on relatively finn soil foundation. The numerical wave flume based on the Reynolds averaged Navier-Stokes equations for impressible viscosity fluid is adopted in this paper to simulate the hydraulic performances of QCB. Since the geometry of both breakwaters is similar and SCB has been studied in depth, the hydraulic performances of QCB are given in comparison with those of SCB.
基金Supported by the High-Tech Research and Development Program of China (863 Program, No. 2001AA633070 2003AA604040)the National Natural Science Foundation of China (No. 40476015).
文摘This paper introduces a numerical model for studying the evolution of a periodic wave train, shoaling, and breaking in surf zone. The model can solve the Reynolds averaged Navier-Stokes (RANS) equations for a mean flow, and the k-ε equations for turbulence kinetic energy k and turbulence dissipation rate ε. To track a free surface, the volume of fluid (VOF) function, satisfying the advection equation was introduced. In the numerical treatment, third-order upwind difference scheme was applied to the convection terms of the RANS equations in order to reduce the effect of numerical viscosity. The shoaling and breaking processes of a periodic wave train on gently sloping beaches were modeled. The computed wave heights of a sloping beach and the distribution of breaking wave pressure on a vertical wall were compared with laboratory data.