The objective of this study is to apply numerical methods to investigate the effects of the spacing on the vortex shedding of two elastically mounted cylinders in tandem arrangement. 2-D computational simulations are ...The objective of this study is to apply numerical methods to investigate the effects of the spacing on the vortex shedding of two elastically mounted cylinders in tandem arrangement. 2-D computational simulations are carried out at low Reynolds number of 100. The study utilized a commercial software ANSYS FLUENT to carry out the computational simulations. First, a number of test cases, including flows past one and two cylinders with predetermined motions, are simulated to evaluate the solver’s accuracy. The vortex shedding and hydrodynamic forces from the current findings and those from literature show good agreement, which supports the accuracy of the current solver. Multiple simulations were the performed for flow around two elastically mounted cylinders in tandem arrangement. The subsequent relative flow fields demonstrated that for a certain range of spacing, vortex shedding was completely eliminated while it remained completely unaffected or partially reduced for other ranges of spacing. This suggests that the spacing between the two cylinders can be utilized as a passive method of suppressing vortex shedding.展开更多
A two-dimensional(2-D) incompressible plane jet is investigated using the lattice Boltzmann method(LBM) for low Reynolds numbers of 42 and 65 based on the jet-exit-width and the maximum jet-exit-velocity. The resu...A two-dimensional(2-D) incompressible plane jet is investigated using the lattice Boltzmann method(LBM) for low Reynolds numbers of 42 and 65 based on the jet-exit-width and the maximum jet-exit-velocity. The results show that the mean centerline velocity decays as x-1/3 and the jet spreads as x2/3 in the self-similar region, which are consistent with the theoretical predictions and the experimental data. The time histories and PSD analyses of the instantaneous centerline velocities indicate the periodic behavior and the interaction between periodic components of velocities should not be neglected in the far field region, although it is invisible in the near field region.展开更多
This study introduces the representation of natural number sets as row vectors and pretends to offer a new perspective on the strong Goldbach conjecture. The natural numbers are restructured and expanded with the incl...This study introduces the representation of natural number sets as row vectors and pretends to offer a new perspective on the strong Goldbach conjecture. The natural numbers are restructured and expanded with the inclusion of the zero element as the source of a strong Goldbach conjecture reformulation. A prime Boolean vector is defined, pinpointing the positions of prime numbers within the odd number sequence. The natural unit primality is discussed in this context and transformed into a source of quantum-like indetermination. This approach allows for rephrasing the strong Goldbach conjecture, framed within a Boolean scalar product between the prime Boolean vector and its reverse. Throughout the discussion, other intriguing topics emerge and are thoroughly analyzed. A final description of two empirical algorithms is provided to prove the strong Goldbach conjecture.展开更多
With the help of the classical Abel’s lemma on summation by parts and algorithm of q-hypergeometric summations, we deal with the summation, which can be written as multiplication of a q-hypergeometric term and q-harm...With the help of the classical Abel’s lemma on summation by parts and algorithm of q-hypergeometric summations, we deal with the summation, which can be written as multiplication of a q-hypergeometric term and q-harmonic numbers. This enables us to construct and prove identities on q-harmonic numbers. Several examples are also given.展开更多
This paper is a review, a thesis, of some interesting results that have been obtained in various research concerning the “brane collisions in string and M-theory” (Cyclic Universe), p-adic inflation and p-adic cosmo...This paper is a review, a thesis, of some interesting results that have been obtained in various research concerning the “brane collisions in string and M-theory” (Cyclic Universe), p-adic inflation and p-adic cosmology. In Section 2, we have described some equations concerning cosmic evolution in a Cyclic Universe. In Section 3, we have described some equations concerning the cosmological perturbations in a Big Crunch/Big Bang space-time, the M-theory model of a Big Crunch/Big Bang transition and some equations concerning the solution of a braneworld Big Crunch/Big Bang Cosmology. In Section 4, we have described some equations concerning the generating ekpyrotic curvature perturbations before the Big Bang, some equations concerning the effective five-dimensional theory of the strongly coupled heterotic string as a gauged version of N=1five-dimensional supergravity with four-dimensional boundaries, and some equations concerning the colliding branes and the origin of the Hot Big Bang. In Section 5, we have described some equations regarding the “null energy condition” violation concerning the inflationary models and some equations concerning the evolution to a smooth universe in an ekpyrotic contracting phase with w>1. In Section 6, we have described some equations concerning the approximate inflationary solutions rolling away from the unstable maximum of p-adic string theory. In Section 7, we have described various equations concerning the p-adic minisuperspace model, zeta strings, zeta nonlocal scalar fields and p-adic and adelic quantum cosmology. In Section 8, we have shown various and interesting mathematical connections between some equations concerning the p-adic inflation, the p-adic quantum cosmology, the zeta strings and the brane collisions in string and M-theory. Furthermore, in each section, we have shown the mathematical connections with various sectors of Number Theory, principally the Ramanujan’s modular equations, the Aurea Ratio and the Fibonacci’s numbers.展开更多
Micro air vehicles (MAV's) have the potential to revolutionize our sensing and information gathering capabilities in environmental monitoring and homeland security areas. Due to the MAV's' small size, flight regi...Micro air vehicles (MAV's) have the potential to revolutionize our sensing and information gathering capabilities in environmental monitoring and homeland security areas. Due to the MAV's' small size, flight regime, and modes of operation, significant scientific advancement will be needed to create this revolutionary capability. Aerodynamics, structural dynamics, and flight dynamics of natural flyers intersects with some of the richest problems in MAV's, inclu- ding massively unsteady three-dimensional separation, transition in boundary layers and shear layers, vortical flows and bluff body flows, unsteady flight environment, aeroelasticity, and nonlinear and adaptive control are just a few examples. A challenge is that the scaling of both fluid dynamics and structural dynamics between smaller natural flyer and practical flying hardware/lab experiment (larger dimension) is fundamentally difficult. In this paper, we offer an overview of the challenges and issues, along with sample results illustrating some of the efforts made from a computational modeling angle.展开更多
The aerodynamic force and flow structure of NACA 0012 airfoil performing an unsteady motion at low Reynolds number (Re = 100) are calculated by solving Navier-Stokes equations. The motion consists of three parts: the ...The aerodynamic force and flow structure of NACA 0012 airfoil performing an unsteady motion at low Reynolds number (Re = 100) are calculated by solving Navier-Stokes equations. The motion consists of three parts: the first translation, rotation and the second translation in the direction opposite to the first. The rotation and the second translation in this motion are expected to represent the rotation and translation of the wing-section of a hovering insect. The flow structure is used in combination with the theory of vorticity dynamics to explain the generation of unsteady aerodynamic force in the motion. During the rotation, due to the creation of strong vortices in short time, large aerodynamic force is produced and the force is almost normal to the airfoil chord. During the second translation, large lift coefficient can be maintained for certain time period and (C) over bar (L), the lift coefficient averaged over four chord lengths of travel, is larger than 2 (the corresponding steady-state lift coefficient is only 0.9). The large lift coefficient is due to two effects. The first is the delayed shedding of the stall vortex. The second is that the vortices created during the airfoil rotation and in the near wake left by previous translation form a short 'vortex street' in front of the airfoil and the 'vortex street' induces a 'wind'; against this 'wind' the airfoil translates, increasing its relative speed. The above results provide insights to the understanding of the mechanism of high-lift generation by a hovering insect.展开更多
Spanwise flexibility is a key factor influencing propulsion performance of pectoral foils. Performances of bionic fish with oscillating pectoral foils can be enhanced by properly selecting the spanwise flexibility. Th...Spanwise flexibility is a key factor influencing propulsion performance of pectoral foils. Performances of bionic fish with oscillating pectoral foils can be enhanced by properly selecting the spanwise flexibility. The influence law of spanwise flexibility on thrust generation and propulsion efficiency of a rectangular hydro-foil is discussed. Series foils constructed by the two-component silicon rubber are developed. NACA0015 shape of chordwise cross-section is employed. The foils are strengthened by fin rays of different rigidity to realize variant spanwise rigidity and almost the same chordwise flexibility. Experiments on a towing platform developed are carried out at low Reynolds numbers of 10 000, 15 000, and 20 000 and Strouhal numbers from 0.1 to 1. The following experimental results are achieved: (1) The average forward thrust increases with the St number increased; (2) Certain degree of spanwise flexibility is beneficial to the forward thrust generation, but the thrust gap is not large for the fins of different spanwise rigidity; (3) The fin of the maximal spanwise flexibility owns the highest propulsion efficiency; (4) Effect of the Reynolds number on the propulsion efficiency is significant. The experimental results can be utilized as a reference in deciding the spanwise flexibility of bionic pectoral fins in designing of robotic fish prototype propelled by flapping-wing.展开更多
High-speed rotor rotation under the low-density condition creates a special low-Reynolds compressible flow around the rotor blade airfoil where the compressibility effect on the laminar separated shear layer occurs. H...High-speed rotor rotation under the low-density condition creates a special low-Reynolds compressible flow around the rotor blade airfoil where the compressibility effect on the laminar separated shear layer occurs. However, the compressibility effect and shock wave generation associated with the increase in the Mach number (M) and the trend change due to their interference have not been clarified. The purpose is to clear the compressibility effect and its impact of shock wave generation on the flow field and aerodynamics. Therefore, we perform a two-dimensional unsteady calculation by Computational fluid dynamics (CFD) analysis using the CLF5605 airfoil used in the Mars helicopter Ingenuity, which succeeded in its first flight on Mars. The calculation conditions are set to the Reynolds number (Re) at 75% rotor span in hovering (Re = 15,400), and the Mach number was varied from incompressible (M = 0.2) to transonic (M = 1.2). The compressible fluid dynamics solver FaSTAR developed by the Japan aerospace exploration agency (JAXA) is used, and calculations are performed under multiple conditions in which the Mach number and angle of attack (α) are swept. The results show that a flow field is similar to that in the Earth’s atmosphere above M = 1.0, such as bow shock at the leading edge, whereas multiple λ-type shock waves are observed over the separated shear layer above α = 3° at M = 0.80. However, no significant difference is found in the C<sub>p</sub> distribution around the airfoil between M = 0.6 and M = 0.8. From the results, it is found that multiple λ-type shock waves have no significant effect on the airfoil surface pressure distribution, the separated shear layer effect is dominant in the surface pressure change and aerodynamic characteristics.展开更多
As the Reynolds number increases, the skin friction has been identified as the dominant drag in many practical applications. In the present paper, the effects of the Reynolds number on the mean skin friction decomposi...As the Reynolds number increases, the skin friction has been identified as the dominant drag in many practical applications. In the present paper, the effects of the Reynolds number on the mean skin friction decomposition in turbulent channel flows up to Reτ= 5 200 are investigated based on two different methods, i.e., the FukagataIwamoto-Kasagi(FIK) identity(FUKAGATA, K., IWAMOTO, K., and KASAGI, N.Contribution of Reynolds stress distribution to the skin friction in wall-bounded flows.Physics of Fluids, 14(11), L73–L76(2002)) and the Renard-Deck(RD) identity(DECK,S., RENARD, N., LARAUFIE, R., and WEISS, P.′E. Large-scale contribution to mean wall shear stress in high-Reynolds-number flat-plate boundary layers up to Reθ= 13 650.Journal of Fluid Mechanics, 743, 202–248(2014)). The direct numerical simulation(DNS) data provided by Lee and Moser(LEE, M. and MOSER, R. D. Direct numerical simulation of turbulent channel flow up to Reτ≈ 5 200. Journal of Fluid Mechanics,774, 395–415(2015)) are used. For these two skin friction decomposition methods, their decomposed constituents are discussed and compared for different Reynolds numbers.The integrands of the decomposed constituents are locally analyzed across the boundary layer to assess the actions associated with the inhomogeneity and multi-scale nature of turbulent motion. The scaling of the decomposed constituents and their integrands are presented. In addition, the boundary layer is divided into three sub-regions to evaluate the contributive proportion of each sub-region with an increase in the Reynolds number.展开更多
Large eddy simulation is performed to study three-dimensional wave-current interaction with a square cylinder at different Reynolds numbers, ranging from 1,000 to 600,000. The Keulegan-Carpenter number is relevantly a...Large eddy simulation is performed to study three-dimensional wave-current interaction with a square cylinder at different Reynolds numbers, ranging from 1,000 to 600,000. The Keulegan-Carpenter number is relevantly a constant of 0.6 for all cases. The Strouhal number, the mean and the RMS values of the effective drag coefficient in the streamwise and transverse directions are computed for various Reynolds numbers, and the velocity of a rep- resentative point in the turbulent zone is simulated to find the turbulent feature. It is found that the wave-current interaction should be considered as three-dimensional flow when the Reynolds number is high; under wave-current effect, there exists a critical Reynolds number, and when the Reynolds number is smaller than the critical one, current effect on wave can be nearly neglected; conversely, with the Reynolds number increasing, wave-currentstructure interaction is sensitive to the Reynolds number.展开更多
By coupling the non-equilibrium extrapolation scheme for boundary condition with the multi-relaxation-time lattice Boltzmann method, this paper finds that the stability of the multi-relaxation-time model can be improv...By coupling the non-equilibrium extrapolation scheme for boundary condition with the multi-relaxation-time lattice Boltzmann method, this paper finds that the stability of the multi-relaxation-time model can be improved greatly, especially on simulating high Reynolds number (Re) flow. As a discovery, the super-stability analysed by Lallemand and Luo is verified and the complex structure of the cavity flow is also exhibited in our numerical simulation when Re is high enough. To the best knowledge of the authors, the maximum of Re which has been investigated by direct numerical simulation is only around 50 000 in the literature; however, this paper can readily extend the maximum to 1000 000 with the above combination.展开更多
In this paper, 2-D computational analyses were conducted for unsteady high Reynolds number flows around a smooth circular cylinder in the supercritical and upper-transition flow regimes, i.e. 8.21×104〈Re〈1.54...In this paper, 2-D computational analyses were conducted for unsteady high Reynolds number flows around a smooth circular cylinder in the supercritical and upper-transition flow regimes, i.e. 8.21×104〈Re〈1.54×106. The calculations were performed by means of solving the 2-D Unsteady Reynolds-Averaged Navier-Stokes (URANS) equations with a k-ε turbulence model. The calculated results, produced flow structure drag and lift coefficients, as well as Strouhal numbers. The findings were in good agreement with previous published data, which also supplied us with a good understanding of the flow across cylinders of different high Reynolds numbers. Meanwhile, an effective measure was presented to control the lift force on a cylinder, which points the way to decrease the vortex induced vibration of marine structure in future.展开更多
Numerical analysis was performed to investigate flow and heat transfer characteristics in spiral coiled tube heat exchanger. Radius of curvature of the spiral coiled tube was gradually increased as total rotating angl...Numerical analysis was performed to investigate flow and heat transfer characteristics in spiral coiled tube heat exchanger. Radius of curvature of the spiral coiled tube was gradually increased as total rotating angle reached 12n. As the varying radius of curvature became a dominant flow parameter, three-dimensional flow analysis was performed to this flow together with different Reynolds numbers while constant wall heat flux condition was set in thermal field. From the analysis, centrifugal force due to curvature effect is found to have significant role in behavior of pressure drop and heat transfer. The centrifugal force enhances pressure drop and heat transfer to have generally higher values in the spiral coiled tube than those in the straight tube. Even then, friction factor and Nusselt number are found to follow the proportionality with square root of the Dean number. Individual effect of flow parameters of Reynolds number and curvature ratio was investigated and effect of Reynolds number is found to be stronger than that of curvature effect.展开更多
A series of three-dimensional numerical simulations is carried out to investigate the effect of inclined angle on flow behavior behind two side-by-side inclined cylinders at low Reynolds number Re=100 and small spacin...A series of three-dimensional numerical simulations is carried out to investigate the effect of inclined angle on flow behavior behind two side-by-side inclined cylinders at low Reynolds number Re=100 and small spacing ratio T/D=1.5 (T is the center-to-center distance between two side-by-side cylinders, D is the diameter of cylinder). The instantaneous and time-averaged flow fields, force coefficients and Strouhal numbers are analyzed. Special attention is focused on the axial flow characteristics with variation of the inclined angle. The results show that the inclined angle has a significant effect on the gap flow behaviors behind two inclined cylinders. The vortex shedding behind two cylinders is suppressed with the increase of the inclined angle as well as the flip-flop gap flow. Moreover, the mean drag coefficient, root-mean-square lift coefficient and Strouhal numbers decrease monotonously with the increase of the inclined angle, which follows the independent principle at small inclined angles.展开更多
It is well known that the Reynolds number has a significant effect on the vortex-induced vibrations(VIV) of cylinders. In this paper, a novel in-line(IL) and cross-flow(CF) coupling VIV prediction model for circular c...It is well known that the Reynolds number has a significant effect on the vortex-induced vibrations(VIV) of cylinders. In this paper, a novel in-line(IL) and cross-flow(CF) coupling VIV prediction model for circular cylinders has been proposed, in which the influence of the Reynolds number was comprehensively considered. The Strouhal number linked with the vortex shedding frequency was calculated through a function of the Reynolds number. The coefficient of the mean drag force was fitted as a new piecewise function of the Reynolds number, and its amplification resulted from the CF VIV was also taken into account. The oscillating drag and lift forces were modelled with classical van der Pol wake oscillators and their empirical parameters were determined based on the lock-in boundaries and the peak-amplitude formulas. A new peak-amplitude formula for the IL VIV was developed under the resonance condition with respect to the mass-damping ratio and the Reynolds number. When compared with the results from the experiments and some other prediction models, the present model could give good estimations on the vibration amplitudes and frequencies of the VIV both for elastically-mounted rigid and long flexible cylinders. The present model considering the influence of the Reynolds number could generally provide better results than that neglecting the effect of the Reynolds number.展开更多
A series of tests have been conducted using a Cryogenic Wind Tunnel to study the effect of Reynolds number(Re)on the aerodynamic force and surface pressure experienced by a high speed train.The test Reynolds number ha...A series of tests have been conducted using a Cryogenic Wind Tunnel to study the effect of Reynolds number(Re)on the aerodynamic force and surface pressure experienced by a high speed train.The test Reynolds number has been varied from 1 million to 10 million,which is the highest Reynolds number a wind tunnel has ever achieved for a train test.According to our results,the drag coefficient of the leading car decreases with higher Reynolds number for yaw angles up to 30º.The drag force coefficient drops about 0.06 when Re is raised from 1 million to 10 million.The side force is caused by the high pressure at the windward side and the low pressure generated by the vortex at the lee side.Both pressure distributions are not appreciably affected by Reynolds number changes at yaw angles up to 30°.The lift force coefficient increases with higher Re,though the change is small.At a yaw angle of zero the down force coefficient is reduced by a scale factor of about 0.03 when the Reynolds number is raised over the considered range.At higher yaw angles the lift force coefficient is reduced about 0.1.Similar to the side force coefficient,the rolling moment coefficient does not change much with Re.The magnitude of the pitching moment coefficient increases with higher Re.This indicates that the load on the front bogie is higher at higher Reynolds numbers.The yawing moment coefficient increases with Re.This effect is more evident at higher yaw angles.The yawing moment coefficient increases by about 6%when Re is raised from 1 million to 10 million.The influence of Re on the rolling moment coefficient around the leeward rail is relatively smaller.It increases by about 2%over the considered range of Re.展开更多
Flow transition from laminar to turbulent mode (and vice versa)—that is, the initiation of turbulence—is one of the most important research subjects in the history of engineering. Even for pipe flow, predicting the ...Flow transition from laminar to turbulent mode (and vice versa)—that is, the initiation of turbulence—is one of the most important research subjects in the history of engineering. Even for pipe flow, predicting the onset of turbulence requires sophisticated instrumentation and/or direct numerical simulation, based on observing the instantaneous flow structure formation and evolution. In this work, a local Reynolds number equivalence c (ratio of local inertia effect to viscous effect) is seen to conform to the Universal Law of the Wall, where c = 1 represents a quantitative balance between the abovementioned two effects. This coincides with the wall layer thickness (y+= 1, where y+ is the dimensionless distance from the wall surface defined in the Universal Law of the Wall). It is found that the characteristic of how the local derivative of c against the local velocity changes with increasing velocity determines the onset of turbulence. For pipe flow, c - 25, and for plate flow, c - 151.5. These findings suggest that a certain combination of c and velocity (nonlinearity) can qualify the source of turbulence (i.e., generate turbulent energy). Similarly, a re-evaluation of the previous findings reveals that only the geometrically narrow domain can act locally as the source of turbulence, with the rest of the flow field largely being left for transporting and dissipating. This understanding will have an impact on the future large-scale modeling of turbulence.展开更多
A scale-similarity model of a two-point two-time Lagrangian velocity correlation(LVC) was originally developed for the relative dispersion of tracer particles in isotropic turbulent flows(HE, G. W., JIN, G. D., and ZH...A scale-similarity model of a two-point two-time Lagrangian velocity correlation(LVC) was originally developed for the relative dispersion of tracer particles in isotropic turbulent flows(HE, G. W., JIN, G. D., and ZHAO, X. Scale-similarity model for Lagrangian velocity correlations in isotropic and stationary turbulence. Physical Review E, 80, 066313(2009)). The model can be expressed as a two-point Eulerian space correlation and the dispersion velocity V. The dispersion velocity denotes the rate at which one moving particle departs from another fixed particle. This paper numerically validates the robustness of the scale-similarity model at high Taylor micro-scale Reynolds numbers up to 373, which are much higher than the original values(R_λ = 66, 102). The effect of the Reynolds number on the dispersion velocity in the scale-similarity model is carefully investigated. The results show that the scale-similarity model is more accurate at higher Reynolds numbers because the two-point Lagrangian velocity correlations with different initial spatial separations collapse into a universal form compared with a combination of the initial separation and the temporal separation via the dispersion velocity.Moreover, the dispersion velocity V normalized by the Kolmogorov velocity V_η ≡ η/τ_η in which η and τ_η are the Kolmogorov space and time scales, respectively, scales with the Reynolds number R_λ as V/V_η ∝ R_λ^(1.39) obtained from the numerical data.展开更多
文摘The objective of this study is to apply numerical methods to investigate the effects of the spacing on the vortex shedding of two elastically mounted cylinders in tandem arrangement. 2-D computational simulations are carried out at low Reynolds number of 100. The study utilized a commercial software ANSYS FLUENT to carry out the computational simulations. First, a number of test cases, including flows past one and two cylinders with predetermined motions, are simulated to evaluate the solver’s accuracy. The vortex shedding and hydrodynamic forces from the current findings and those from literature show good agreement, which supports the accuracy of the current solver. Multiple simulations were the performed for flow around two elastically mounted cylinders in tandem arrangement. The subsequent relative flow fields demonstrated that for a certain range of spacing, vortex shedding was completely eliminated while it remained completely unaffected or partially reduced for other ranges of spacing. This suggests that the spacing between the two cylinders can be utilized as a passive method of suppressing vortex shedding.
基金Supported by the National Nature Science Foundation of China(10472046)the Scientific Innova-tion Research of College Graduate in Jiangsu Province(CX08B-035Z)the Innovation and Excellence Foundation of Doctoral Dissertation of Nanjing University of Aeronautics and Astronautics(BCXJ08-01)~~
文摘A two-dimensional(2-D) incompressible plane jet is investigated using the lattice Boltzmann method(LBM) for low Reynolds numbers of 42 and 65 based on the jet-exit-width and the maximum jet-exit-velocity. The results show that the mean centerline velocity decays as x-1/3 and the jet spreads as x2/3 in the self-similar region, which are consistent with the theoretical predictions and the experimental data. The time histories and PSD analyses of the instantaneous centerline velocities indicate the periodic behavior and the interaction between periodic components of velocities should not be neglected in the far field region, although it is invisible in the near field region.
文摘This study introduces the representation of natural number sets as row vectors and pretends to offer a new perspective on the strong Goldbach conjecture. The natural numbers are restructured and expanded with the inclusion of the zero element as the source of a strong Goldbach conjecture reformulation. A prime Boolean vector is defined, pinpointing the positions of prime numbers within the odd number sequence. The natural unit primality is discussed in this context and transformed into a source of quantum-like indetermination. This approach allows for rephrasing the strong Goldbach conjecture, framed within a Boolean scalar product between the prime Boolean vector and its reverse. Throughout the discussion, other intriguing topics emerge and are thoroughly analyzed. A final description of two empirical algorithms is provided to prove the strong Goldbach conjecture.
文摘With the help of the classical Abel’s lemma on summation by parts and algorithm of q-hypergeometric summations, we deal with the summation, which can be written as multiplication of a q-hypergeometric term and q-harmonic numbers. This enables us to construct and prove identities on q-harmonic numbers. Several examples are also given.
文摘This paper is a review, a thesis, of some interesting results that have been obtained in various research concerning the “brane collisions in string and M-theory” (Cyclic Universe), p-adic inflation and p-adic cosmology. In Section 2, we have described some equations concerning cosmic evolution in a Cyclic Universe. In Section 3, we have described some equations concerning the cosmological perturbations in a Big Crunch/Big Bang space-time, the M-theory model of a Big Crunch/Big Bang transition and some equations concerning the solution of a braneworld Big Crunch/Big Bang Cosmology. In Section 4, we have described some equations concerning the generating ekpyrotic curvature perturbations before the Big Bang, some equations concerning the effective five-dimensional theory of the strongly coupled heterotic string as a gauged version of N=1five-dimensional supergravity with four-dimensional boundaries, and some equations concerning the colliding branes and the origin of the Hot Big Bang. In Section 5, we have described some equations regarding the “null energy condition” violation concerning the inflationary models and some equations concerning the evolution to a smooth universe in an ekpyrotic contracting phase with w>1. In Section 6, we have described some equations concerning the approximate inflationary solutions rolling away from the unstable maximum of p-adic string theory. In Section 7, we have described various equations concerning the p-adic minisuperspace model, zeta strings, zeta nonlocal scalar fields and p-adic and adelic quantum cosmology. In Section 8, we have shown various and interesting mathematical connections between some equations concerning the p-adic inflation, the p-adic quantum cosmology, the zeta strings and the brane collisions in string and M-theory. Furthermore, in each section, we have shown the mathematical connections with various sectors of Number Theory, principally the Ramanujan’s modular equations, the Aurea Ratio and the Fibonacci’s numbers.
基金a Multidisciplinary University Research Initiative (MURI) project sponsored by AFOSR
文摘Micro air vehicles (MAV's) have the potential to revolutionize our sensing and information gathering capabilities in environmental monitoring and homeland security areas. Due to the MAV's' small size, flight regime, and modes of operation, significant scientific advancement will be needed to create this revolutionary capability. Aerodynamics, structural dynamics, and flight dynamics of natural flyers intersects with some of the richest problems in MAV's, inclu- ding massively unsteady three-dimensional separation, transition in boundary layers and shear layers, vortical flows and bluff body flows, unsteady flight environment, aeroelasticity, and nonlinear and adaptive control are just a few examples. A challenge is that the scaling of both fluid dynamics and structural dynamics between smaller natural flyer and practical flying hardware/lab experiment (larger dimension) is fundamentally difficult. In this paper, we offer an overview of the challenges and issues, along with sample results illustrating some of the efforts made from a computational modeling angle.
基金The project supported by the National Natural Science Foundation of China (19725210)
文摘The aerodynamic force and flow structure of NACA 0012 airfoil performing an unsteady motion at low Reynolds number (Re = 100) are calculated by solving Navier-Stokes equations. The motion consists of three parts: the first translation, rotation and the second translation in the direction opposite to the first. The rotation and the second translation in this motion are expected to represent the rotation and translation of the wing-section of a hovering insect. The flow structure is used in combination with the theory of vorticity dynamics to explain the generation of unsteady aerodynamic force in the motion. During the rotation, due to the creation of strong vortices in short time, large aerodynamic force is produced and the force is almost normal to the airfoil chord. During the second translation, large lift coefficient can be maintained for certain time period and (C) over bar (L), the lift coefficient averaged over four chord lengths of travel, is larger than 2 (the corresponding steady-state lift coefficient is only 0.9). The large lift coefficient is due to two effects. The first is the delayed shedding of the stall vortex. The second is that the vortices created during the airfoil rotation and in the near wake left by previous translation form a short 'vortex street' in front of the airfoil and the 'vortex street' induces a 'wind'; against this 'wind' the airfoil translates, increasing its relative speed. The above results provide insights to the understanding of the mechanism of high-lift generation by a hovering insect.
基金supported by National Hi-tech Research and Development Program of China(863 Program, Grant No. 2006AA04Z252)National Natural Science Foundation of China(Grant No. 51005006)+1 种基金Research Fund for the Doctoral Program of Higher Education of China(Grand No. 20101102110022)Innovation Foundation of Beihang University for PhD Graduates, China
文摘Spanwise flexibility is a key factor influencing propulsion performance of pectoral foils. Performances of bionic fish with oscillating pectoral foils can be enhanced by properly selecting the spanwise flexibility. The influence law of spanwise flexibility on thrust generation and propulsion efficiency of a rectangular hydro-foil is discussed. Series foils constructed by the two-component silicon rubber are developed. NACA0015 shape of chordwise cross-section is employed. The foils are strengthened by fin rays of different rigidity to realize variant spanwise rigidity and almost the same chordwise flexibility. Experiments on a towing platform developed are carried out at low Reynolds numbers of 10 000, 15 000, and 20 000 and Strouhal numbers from 0.1 to 1. The following experimental results are achieved: (1) The average forward thrust increases with the St number increased; (2) Certain degree of spanwise flexibility is beneficial to the forward thrust generation, but the thrust gap is not large for the fins of different spanwise rigidity; (3) The fin of the maximal spanwise flexibility owns the highest propulsion efficiency; (4) Effect of the Reynolds number on the propulsion efficiency is significant. The experimental results can be utilized as a reference in deciding the spanwise flexibility of bionic pectoral fins in designing of robotic fish prototype propelled by flapping-wing.
文摘High-speed rotor rotation under the low-density condition creates a special low-Reynolds compressible flow around the rotor blade airfoil where the compressibility effect on the laminar separated shear layer occurs. However, the compressibility effect and shock wave generation associated with the increase in the Mach number (M) and the trend change due to their interference have not been clarified. The purpose is to clear the compressibility effect and its impact of shock wave generation on the flow field and aerodynamics. Therefore, we perform a two-dimensional unsteady calculation by Computational fluid dynamics (CFD) analysis using the CLF5605 airfoil used in the Mars helicopter Ingenuity, which succeeded in its first flight on Mars. The calculation conditions are set to the Reynolds number (Re) at 75% rotor span in hovering (Re = 15,400), and the Mach number was varied from incompressible (M = 0.2) to transonic (M = 1.2). The compressible fluid dynamics solver FaSTAR developed by the Japan aerospace exploration agency (JAXA) is used, and calculations are performed under multiple conditions in which the Mach number and angle of attack (α) are swept. The results show that a flow field is similar to that in the Earth’s atmosphere above M = 1.0, such as bow shock at the leading edge, whereas multiple λ-type shock waves are observed over the separated shear layer above α = 3° at M = 0.80. However, no significant difference is found in the C<sub>p</sub> distribution around the airfoil between M = 0.6 and M = 0.8. From the results, it is found that multiple λ-type shock waves have no significant effect on the airfoil surface pressure distribution, the separated shear layer effect is dominant in the surface pressure change and aerodynamic characteristics.
基金Project supported by the National Basic Research Program of China(973 Program)(No.2014CB744802)the National Natural Science Foundation of China(No.11772194)
文摘As the Reynolds number increases, the skin friction has been identified as the dominant drag in many practical applications. In the present paper, the effects of the Reynolds number on the mean skin friction decomposition in turbulent channel flows up to Reτ= 5 200 are investigated based on two different methods, i.e., the FukagataIwamoto-Kasagi(FIK) identity(FUKAGATA, K., IWAMOTO, K., and KASAGI, N.Contribution of Reynolds stress distribution to the skin friction in wall-bounded flows.Physics of Fluids, 14(11), L73–L76(2002)) and the Renard-Deck(RD) identity(DECK,S., RENARD, N., LARAUFIE, R., and WEISS, P.′E. Large-scale contribution to mean wall shear stress in high-Reynolds-number flat-plate boundary layers up to Reθ= 13 650.Journal of Fluid Mechanics, 743, 202–248(2014)). The direct numerical simulation(DNS) data provided by Lee and Moser(LEE, M. and MOSER, R. D. Direct numerical simulation of turbulent channel flow up to Reτ≈ 5 200. Journal of Fluid Mechanics,774, 395–415(2015)) are used. For these two skin friction decomposition methods, their decomposed constituents are discussed and compared for different Reynolds numbers.The integrands of the decomposed constituents are locally analyzed across the boundary layer to assess the actions associated with the inhomogeneity and multi-scale nature of turbulent motion. The scaling of the decomposed constituents and their integrands are presented. In addition, the boundary layer is divided into three sub-regions to evaluate the contributive proportion of each sub-region with an increase in the Reynolds number.
基金supported by the National Natural Science Foundation of China (No. 51178397)Technological Research and Development Programs of the Ministry of Railways (No. 2010G004-L)
文摘Large eddy simulation is performed to study three-dimensional wave-current interaction with a square cylinder at different Reynolds numbers, ranging from 1,000 to 600,000. The Keulegan-Carpenter number is relevantly a constant of 0.6 for all cases. The Strouhal number, the mean and the RMS values of the effective drag coefficient in the streamwise and transverse directions are computed for various Reynolds numbers, and the velocity of a rep- resentative point in the turbulent zone is simulated to find the turbulent feature. It is found that the wave-current interaction should be considered as three-dimensional flow when the Reynolds number is high; under wave-current effect, there exists a critical Reynolds number, and when the Reynolds number is smaller than the critical one, current effect on wave can be nearly neglected; conversely, with the Reynolds number increasing, wave-currentstructure interaction is sensitive to the Reynolds number.
基金Project supported by the National Natural Science Foundation of China (Grant No 70271069).
文摘By coupling the non-equilibrium extrapolation scheme for boundary condition with the multi-relaxation-time lattice Boltzmann method, this paper finds that the stability of the multi-relaxation-time model can be improved greatly, especially on simulating high Reynolds number (Re) flow. As a discovery, the super-stability analysed by Lallemand and Luo is verified and the complex structure of the cavity flow is also exhibited in our numerical simulation when Re is high enough. To the best knowledge of the authors, the maximum of Re which has been investigated by direct numerical simulation is only around 50 000 in the literature; however, this paper can readily extend the maximum to 1000 000 with the above combination.
基金Foundation item: Supported by Supported by the National Natural Science Foundation of China (Grant No. 51009070).
文摘In this paper, 2-D computational analyses were conducted for unsteady high Reynolds number flows around a smooth circular cylinder in the supercritical and upper-transition flow regimes, i.e. 8.21×104〈Re〈1.54×106. The calculations were performed by means of solving the 2-D Unsteady Reynolds-Averaged Navier-Stokes (URANS) equations with a k-ε turbulence model. The calculated results, produced flow structure drag and lift coefficients, as well as Strouhal numbers. The findings were in good agreement with previous published data, which also supplied us with a good understanding of the flow across cylinders of different high Reynolds numbers. Meanwhile, an effective measure was presented to control the lift force on a cylinder, which points the way to decrease the vortex induced vibration of marine structure in future.
基金supported by the Second Stage of Brain Korea 21 Projects,Korea
文摘Numerical analysis was performed to investigate flow and heat transfer characteristics in spiral coiled tube heat exchanger. Radius of curvature of the spiral coiled tube was gradually increased as total rotating angle reached 12n. As the varying radius of curvature became a dominant flow parameter, three-dimensional flow analysis was performed to this flow together with different Reynolds numbers while constant wall heat flux condition was set in thermal field. From the analysis, centrifugal force due to curvature effect is found to have significant role in behavior of pressure drop and heat transfer. The centrifugal force enhances pressure drop and heat transfer to have generally higher values in the spiral coiled tube than those in the straight tube. Even then, friction factor and Nusselt number are found to follow the proportionality with square root of the Dean number. Individual effect of flow parameters of Reynolds number and curvature ratio was investigated and effect of Reynolds number is found to be stronger than that of curvature effect.
基金financially supported by Joint Key Funds of Zhejiang Provincial Natural Science Foundation of China and Powerchina Huadong Engineering Corporation Limited(Grant No.LHZ19E090004)the National Key R&D Program of China(Grant No.2018YFD0900901)
文摘A series of three-dimensional numerical simulations is carried out to investigate the effect of inclined angle on flow behavior behind two side-by-side inclined cylinders at low Reynolds number Re=100 and small spacing ratio T/D=1.5 (T is the center-to-center distance between two side-by-side cylinders, D is the diameter of cylinder). The instantaneous and time-averaged flow fields, force coefficients and Strouhal numbers are analyzed. Special attention is focused on the axial flow characteristics with variation of the inclined angle. The results show that the inclined angle has a significant effect on the gap flow behaviors behind two inclined cylinders. The vortex shedding behind two cylinders is suppressed with the increase of the inclined angle as well as the flip-flop gap flow. Moreover, the mean drag coefficient, root-mean-square lift coefficient and Strouhal numbers decrease monotonously with the increase of the inclined angle, which follows the independent principle at small inclined angles.
基金financially supported by the National Natural Science Foundation of China(Grant Nos.51379144,51479135 and51679167)the Science Fund for Creative Research Groups of the National Natural Science Foundation of China(Grant No.51621092)
文摘It is well known that the Reynolds number has a significant effect on the vortex-induced vibrations(VIV) of cylinders. In this paper, a novel in-line(IL) and cross-flow(CF) coupling VIV prediction model for circular cylinders has been proposed, in which the influence of the Reynolds number was comprehensively considered. The Strouhal number linked with the vortex shedding frequency was calculated through a function of the Reynolds number. The coefficient of the mean drag force was fitted as a new piecewise function of the Reynolds number, and its amplification resulted from the CF VIV was also taken into account. The oscillating drag and lift forces were modelled with classical van der Pol wake oscillators and their empirical parameters were determined based on the lock-in boundaries and the peak-amplitude formulas. A new peak-amplitude formula for the IL VIV was developed under the resonance condition with respect to the mass-damping ratio and the Reynolds number. When compared with the results from the experiments and some other prediction models, the present model could give good estimations on the vibration amplitudes and frequencies of the VIV both for elastically-mounted rigid and long flexible cylinders. The present model considering the influence of the Reynolds number could generally provide better results than that neglecting the effect of the Reynolds number.
基金supported by a Major Programme of the National Science and Technology Support,China Grant(2013BAG24B00),under the project“Key technologies and engineering application demonstration of High-speed train for energy saving”.
文摘A series of tests have been conducted using a Cryogenic Wind Tunnel to study the effect of Reynolds number(Re)on the aerodynamic force and surface pressure experienced by a high speed train.The test Reynolds number has been varied from 1 million to 10 million,which is the highest Reynolds number a wind tunnel has ever achieved for a train test.According to our results,the drag coefficient of the leading car decreases with higher Reynolds number for yaw angles up to 30º.The drag force coefficient drops about 0.06 when Re is raised from 1 million to 10 million.The side force is caused by the high pressure at the windward side and the low pressure generated by the vortex at the lee side.Both pressure distributions are not appreciably affected by Reynolds number changes at yaw angles up to 30°.The lift force coefficient increases with higher Re,though the change is small.At a yaw angle of zero the down force coefficient is reduced by a scale factor of about 0.03 when the Reynolds number is raised over the considered range.At higher yaw angles the lift force coefficient is reduced about 0.1.Similar to the side force coefficient,the rolling moment coefficient does not change much with Re.The magnitude of the pitching moment coefficient increases with higher Re.This indicates that the load on the front bogie is higher at higher Reynolds numbers.The yawing moment coefficient increases with Re.This effect is more evident at higher yaw angles.The yawing moment coefficient increases by about 6%when Re is raised from 1 million to 10 million.The influence of Re on the rolling moment coefficient around the leeward rail is relatively smaller.It increases by about 2%over the considered range of Re.
文摘Flow transition from laminar to turbulent mode (and vice versa)—that is, the initiation of turbulence—is one of the most important research subjects in the history of engineering. Even for pipe flow, predicting the onset of turbulence requires sophisticated instrumentation and/or direct numerical simulation, based on observing the instantaneous flow structure formation and evolution. In this work, a local Reynolds number equivalence c (ratio of local inertia effect to viscous effect) is seen to conform to the Universal Law of the Wall, where c = 1 represents a quantitative balance between the abovementioned two effects. This coincides with the wall layer thickness (y+= 1, where y+ is the dimensionless distance from the wall surface defined in the Universal Law of the Wall). It is found that the characteristic of how the local derivative of c against the local velocity changes with increasing velocity determines the onset of turbulence. For pipe flow, c - 25, and for plate flow, c - 151.5. These findings suggest that a certain combination of c and velocity (nonlinearity) can qualify the source of turbulence (i.e., generate turbulent energy). Similarly, a re-evaluation of the previous findings reveals that only the geometrically narrow domain can act locally as the source of turbulence, with the rest of the flow field largely being left for transporting and dissipating. This understanding will have an impact on the future large-scale modeling of turbulence.
基金Project supported by the Science Challenge Program(No.TZ2016001)the National Natural Science Foundation of China(Nos.11472277,11572331,11232011,and 11772337)+1 种基金the Strategic Priority Research Program,Chinese Academy of Sciences(No.XDB22040104)the Key Research Program of Frontier Sciences,Chinese Academy of Sciences(No.QYZDJ-SSW-SYS002)
文摘A scale-similarity model of a two-point two-time Lagrangian velocity correlation(LVC) was originally developed for the relative dispersion of tracer particles in isotropic turbulent flows(HE, G. W., JIN, G. D., and ZHAO, X. Scale-similarity model for Lagrangian velocity correlations in isotropic and stationary turbulence. Physical Review E, 80, 066313(2009)). The model can be expressed as a two-point Eulerian space correlation and the dispersion velocity V. The dispersion velocity denotes the rate at which one moving particle departs from another fixed particle. This paper numerically validates the robustness of the scale-similarity model at high Taylor micro-scale Reynolds numbers up to 373, which are much higher than the original values(R_λ = 66, 102). The effect of the Reynolds number on the dispersion velocity in the scale-similarity model is carefully investigated. The results show that the scale-similarity model is more accurate at higher Reynolds numbers because the two-point Lagrangian velocity correlations with different initial spatial separations collapse into a universal form compared with a combination of the initial separation and the temporal separation via the dispersion velocity.Moreover, the dispersion velocity V normalized by the Kolmogorov velocity V_η ≡ η/τ_η in which η and τ_η are the Kolmogorov space and time scales, respectively, scales with the Reynolds number R_λ as V/V_η ∝ R_λ^(1.39) obtained from the numerical data.