针对涡轮发动机涡轮叶片复杂应力状态下的时效变形问题,以涡轮叶片材料Waspaloy镍基合金为研究对象,开展Waspaloy镍基合金时效处理,完成时效态Waspaloy镍基合金600、700和750℃准静态高温力学拉伸试验。利用Ludwik和Hollomon经验公式预...针对涡轮发动机涡轮叶片复杂应力状态下的时效变形问题,以涡轮叶片材料Waspaloy镍基合金为研究对象,开展Waspaloy镍基合金时效处理,完成时效态Waspaloy镍基合金600、700和750℃准静态高温力学拉伸试验。利用Ludwik和Hollomon经验公式预测Waspaloy镍基合金高温塑性段流变应力,引入平均误差(the mean error,E_(r))和均方根误差(root mean square error,RMSE)评价流变应力的预测准确度。结果表明,时效处理后合金的硬度得到有效提升,而其塑性性能有所降低。Waspaloy镍基合金的抗拉强度和延伸率在600~750℃区间范围内与加载温度呈负相关关系。Ludwik模型较Hollomon模型有更高的流变应力预测精度,而在高温高应变区域Ludwik模型预测流变应力仍存在较大误差。在Ludwik模型的基础上引入指数项,修正后的Ludwik模型能更好地预测Waspaloy镍基合金高温塑性段的流变应力。展开更多
Analytical investigation of liquid Reynolds stress in shear bubbly flow with intermediate Reynolds numbers is absent.In this paper, the velocity field around a sphere bubble in linear shear liquid is assumed to be the...Analytical investigation of liquid Reynolds stress in shear bubbly flow with intermediate Reynolds numbers is absent.In this paper, the velocity field around a sphere bubble in linear shear liquid is assumed to be the linear superposition of the velocity field of uniform liquid passing a sphere bubble and the linear shear velocity field.The formula of shear liquid Reynolds stress was derived by averaging the velocity field in the cell-ensemble averaging method, and the formula was corrected under conditions of intermediate Reynolds number.The formula was compared with that of Sato, and the predicted results of local liquid velocity of the fully developed upward bubbly flow in pipes were compared with the experimental data.The results show that the formula is valid and accurate in prediction.展开更多
文摘针对涡轮发动机涡轮叶片复杂应力状态下的时效变形问题,以涡轮叶片材料Waspaloy镍基合金为研究对象,开展Waspaloy镍基合金时效处理,完成时效态Waspaloy镍基合金600、700和750℃准静态高温力学拉伸试验。利用Ludwik和Hollomon经验公式预测Waspaloy镍基合金高温塑性段流变应力,引入平均误差(the mean error,E_(r))和均方根误差(root mean square error,RMSE)评价流变应力的预测准确度。结果表明,时效处理后合金的硬度得到有效提升,而其塑性性能有所降低。Waspaloy镍基合金的抗拉强度和延伸率在600~750℃区间范围内与加载温度呈负相关关系。Ludwik模型较Hollomon模型有更高的流变应力预测精度,而在高温高应变区域Ludwik模型预测流变应力仍存在较大误差。在Ludwik模型的基础上引入指数项,修正后的Ludwik模型能更好地预测Waspaloy镍基合金高温塑性段的流变应力。
文摘Analytical investigation of liquid Reynolds stress in shear bubbly flow with intermediate Reynolds numbers is absent.In this paper, the velocity field around a sphere bubble in linear shear liquid is assumed to be the linear superposition of the velocity field of uniform liquid passing a sphere bubble and the linear shear velocity field.The formula of shear liquid Reynolds stress was derived by averaging the velocity field in the cell-ensemble averaging method, and the formula was corrected under conditions of intermediate Reynolds number.The formula was compared with that of Sato, and the predicted results of local liquid velocity of the fully developed upward bubbly flow in pipes were compared with the experimental data.The results show that the formula is valid and accurate in prediction.