Pd-Rh nanoparticles are known to easily undergo surface restructuring in reactive environment. This study quantifies, with the help of density functional(DFT) calculations and a novel topological approach, atomic orde...Pd-Rh nanoparticles are known to easily undergo surface restructuring in reactive environment. This study quantifies, with the help of density functional(DFT) calculations and a novel topological approach, atomic ordering and surface segregation effects in Pd-Rh particles with compositions 1:3, 1:1 and 3:1 containing up to 201 atoms(ca. 1.7 nm). The obtained data are used to reliably optimise energetically preferred atomic orderings in inaccessible by DFT Pd-Rh particles containing thousands of atoms and exhibiting sizes exceeding 5 nm, which are typical for catalytic metal particles. It is outlined, how segregation effects on the surface arrangement of Pd-Rh nanoalloy catalysts induced by adsorbates can be evaluated in a simple way within the present modelling setup.展开更多
基金financed by the Generalitat de Catalunya via a pre-doctoral grant 2018FI-B-00384the Operational program“Science and Education for Smart Growth”,project BG05M2OP001-2.009-0028 for funding his research stay in the University of Barcelona+2 种基金financial support by the Bulgarian Ministry of Education and Science under the National Research Programme“Low-carbon Energy for the Transportsupport by the Spanish grants PGC2018-093863-B-C22,CTQ2015-64618-RMDM-2017-0767 as well as by the grant 2017SGR13 of the Generalitat de Catalunya
文摘Pd-Rh nanoparticles are known to easily undergo surface restructuring in reactive environment. This study quantifies, with the help of density functional(DFT) calculations and a novel topological approach, atomic ordering and surface segregation effects in Pd-Rh particles with compositions 1:3, 1:1 and 3:1 containing up to 201 atoms(ca. 1.7 nm). The obtained data are used to reliably optimise energetically preferred atomic orderings in inaccessible by DFT Pd-Rh particles containing thousands of atoms and exhibiting sizes exceeding 5 nm, which are typical for catalytic metal particles. It is outlined, how segregation effects on the surface arrangement of Pd-Rh nanoalloy catalysts induced by adsorbates can be evaluated in a simple way within the present modelling setup.