Plug-in Hybrid Electric Vehicles(PHEVs)represent an innovative breed of transportation,harnessing diverse power sources for enhanced performance.Energy management strategies(EMSs)that coordinate and control different ...Plug-in Hybrid Electric Vehicles(PHEVs)represent an innovative breed of transportation,harnessing diverse power sources for enhanced performance.Energy management strategies(EMSs)that coordinate and control different energy sources is a critical component of PHEV control technology,directly impacting overall vehicle performance.This study proposes an improved deep reinforcement learning(DRL)-based EMSthat optimizes realtime energy allocation and coordinates the operation of multiple power sources.Conventional DRL algorithms struggle to effectively explore all possible state-action combinations within high-dimensional state and action spaces.They often fail to strike an optimal balance between exploration and exploitation,and their assumption of a static environment limits their ability to adapt to changing conditions.Moreover,these algorithms suffer from low sample efficiency.Collectively,these factors contribute to convergence difficulties,low learning efficiency,and instability.To address these challenges,the Deep Deterministic Policy Gradient(DDPG)algorithm is enhanced using entropy regularization and a summation tree-based Prioritized Experience Replay(PER)method,aiming to improve exploration performance and learning efficiency from experience samples.Additionally,the correspondingMarkovDecision Process(MDP)is established.Finally,an EMSbased on the improvedDRLmodel is presented.Comparative simulation experiments are conducted against rule-based,optimization-based,andDRL-based EMSs.The proposed strategy exhibitsminimal deviation fromthe optimal solution obtained by the dynamic programming(DP)strategy that requires global information.In the typical driving scenarios based onWorld Light Vehicle Test Cycle(WLTC)and New European Driving Cycle(NEDC),the proposed method achieved a fuel consumption of 2698.65 g and an Equivalent Fuel Consumption(EFC)of 2696.77 g.Compared to the DP strategy baseline,the proposed method improved the fuel efficiency variances(FEV)by 18.13%,15.1%,and 8.37%over the Deep QNetwork(DQN),Double DRL(DDRL),and original DDPG methods,respectively.The observational outcomes demonstrate that the proposed EMS based on improved DRL framework possesses good real-time performance,stability,and reliability,effectively optimizing vehicle economy and fuel consumption.展开更多
Rationale:Fungal rhinosinusitis is a rare entity in immunocompetent patients and is a diagnostic challenge.Conidiobolomycosis is a rare cause of fungal rhinosinusitis which happens to affect immunocompetent patients.P...Rationale:Fungal rhinosinusitis is a rare entity in immunocompetent patients and is a diagnostic challenge.Conidiobolomycosis is a rare cause of fungal rhinosinusitis which happens to affect immunocompetent patients.Patient concerns:A 30-year-old male patient complained of painless progressive swelling of nose for 5 years and painless progressive swelling of upper lip for 4 years associated with nasal obstruction for 5 years.Diagnosis:Rhinofacial conidiobolomycosis.Interventions:Systemic anti-fungals and saturated solution of potassium iodide.Outcomes:Swelling initially reduced but again increased eventually as he discontinued treatment.Lessons:Proper adherence to drugs and need for facial reconstructive surgery may need to be considered in such cases of conidiobolomycosis.展开更多
Quantitative data analysis in single-molecule localization microscopy(SMLM)is crucial for studying cellular functions at the biomolecular level.In the past decade,several quantitative methods were developed for analyz...Quantitative data analysis in single-molecule localization microscopy(SMLM)is crucial for studying cellular functions at the biomolecular level.In the past decade,several quantitative methods were developed for analyzing SMLM data;however,imaging artifacts in SMLM experiments reduce the accuracy of these methods,and these methods were seldom designed as user-friendly tools.Researchers are now trying to overcome these di±culties by developing easyto-use SMLM data analysis software for certain image analysis tasks.But,this kind of software did not pay su±cient attention to the impact of imaging artifacts on the analysis accuracy,and usually contained only one type of analysis task.Therefore,users are still facing di±culties when they want to have the combined use of different types of analysis methods according to the characteristics of their data and their own needs.In this paper,we report an ImageJ plug-in called DecodeSTORM,which not only has a simple GUI for human–computer interaction,but also combines artifact correction with several quantitative analysis methods.DecodeSTORM includes format conversion,channel registration,artifact correction(drift correction and localization¯ltering),quantitative analysis(segmentation and clustering,spatial distribution statistics and colocalization)and visualization.Importantly,these data analysis methods can be combined freely,thus improving the accuracy of quantitative analysis and allowing users to have an optimal combination of methods.We believe DecodeSTORM is a user-friendly and powerful ImageJ plug-in,which provides an easy and accurate data analysis tool for adventurous biologists who are looking for new imaging tools for studying important questions in cell biology.展开更多
文摘Plug-in Hybrid Electric Vehicles(PHEVs)represent an innovative breed of transportation,harnessing diverse power sources for enhanced performance.Energy management strategies(EMSs)that coordinate and control different energy sources is a critical component of PHEV control technology,directly impacting overall vehicle performance.This study proposes an improved deep reinforcement learning(DRL)-based EMSthat optimizes realtime energy allocation and coordinates the operation of multiple power sources.Conventional DRL algorithms struggle to effectively explore all possible state-action combinations within high-dimensional state and action spaces.They often fail to strike an optimal balance between exploration and exploitation,and their assumption of a static environment limits their ability to adapt to changing conditions.Moreover,these algorithms suffer from low sample efficiency.Collectively,these factors contribute to convergence difficulties,low learning efficiency,and instability.To address these challenges,the Deep Deterministic Policy Gradient(DDPG)algorithm is enhanced using entropy regularization and a summation tree-based Prioritized Experience Replay(PER)method,aiming to improve exploration performance and learning efficiency from experience samples.Additionally,the correspondingMarkovDecision Process(MDP)is established.Finally,an EMSbased on the improvedDRLmodel is presented.Comparative simulation experiments are conducted against rule-based,optimization-based,andDRL-based EMSs.The proposed strategy exhibitsminimal deviation fromthe optimal solution obtained by the dynamic programming(DP)strategy that requires global information.In the typical driving scenarios based onWorld Light Vehicle Test Cycle(WLTC)and New European Driving Cycle(NEDC),the proposed method achieved a fuel consumption of 2698.65 g and an Equivalent Fuel Consumption(EFC)of 2696.77 g.Compared to the DP strategy baseline,the proposed method improved the fuel efficiency variances(FEV)by 18.13%,15.1%,and 8.37%over the Deep QNetwork(DQN),Double DRL(DDRL),and original DDPG methods,respectively.The observational outcomes demonstrate that the proposed EMS based on improved DRL framework possesses good real-time performance,stability,and reliability,effectively optimizing vehicle economy and fuel consumption.
文摘Rationale:Fungal rhinosinusitis is a rare entity in immunocompetent patients and is a diagnostic challenge.Conidiobolomycosis is a rare cause of fungal rhinosinusitis which happens to affect immunocompetent patients.Patient concerns:A 30-year-old male patient complained of painless progressive swelling of nose for 5 years and painless progressive swelling of upper lip for 4 years associated with nasal obstruction for 5 years.Diagnosis:Rhinofacial conidiobolomycosis.Interventions:Systemic anti-fungals and saturated solution of potassium iodide.Outcomes:Swelling initially reduced but again increased eventually as he discontinued treatment.Lessons:Proper adherence to drugs and need for facial reconstructive surgery may need to be considered in such cases of conidiobolomycosis.
基金supported by the National Natural Science Foundation of China(82160345)Key research and development project of Hainan province(ZDYF2021GXJS017)+2 种基金Key Science and Technology Plan Project of Haikou(2021-016)the Start-up Fund from Hainan University(KYQD(ZR)-20022 and KYQD(ZR)-20077)the Student Innovation and Entrepreneurship Project of Biomedical Engineer-ing School,Hainan University(BMECF2D2021001).
文摘Quantitative data analysis in single-molecule localization microscopy(SMLM)is crucial for studying cellular functions at the biomolecular level.In the past decade,several quantitative methods were developed for analyzing SMLM data;however,imaging artifacts in SMLM experiments reduce the accuracy of these methods,and these methods were seldom designed as user-friendly tools.Researchers are now trying to overcome these di±culties by developing easyto-use SMLM data analysis software for certain image analysis tasks.But,this kind of software did not pay su±cient attention to the impact of imaging artifacts on the analysis accuracy,and usually contained only one type of analysis task.Therefore,users are still facing di±culties when they want to have the combined use of different types of analysis methods according to the characteristics of their data and their own needs.In this paper,we report an ImageJ plug-in called DecodeSTORM,which not only has a simple GUI for human–computer interaction,but also combines artifact correction with several quantitative analysis methods.DecodeSTORM includes format conversion,channel registration,artifact correction(drift correction and localization¯ltering),quantitative analysis(segmentation and clustering,spatial distribution statistics and colocalization)and visualization.Importantly,these data analysis methods can be combined freely,thus improving the accuracy of quantitative analysis and allowing users to have an optimal combination of methods.We believe DecodeSTORM is a user-friendly and powerful ImageJ plug-in,which provides an easy and accurate data analysis tool for adventurous biologists who are looking for new imaging tools for studying important questions in cell biology.