Symbiotic nitrogen fixation of rhizobia and leguminous plants is considered as the most important biologic nitrogen fixation system on earth. Symbiotic nodulation of gymnosperm Podocarpus macro-phyllus and rhizobia ha...Symbiotic nitrogen fixation of rhizobia and leguminous plants is considered as the most important biologic nitrogen fixation system on earth. Symbiotic nodulation of gymnosperm Podocarpus macro-phyllus and rhizobia has never been reported. In this study, 11 endophytic bacteria strains were isolated from root nodules of P. macrophyllus and its variation P. macrophyllus var. maki. The plant infection tests on these strains indicated that the isolated strains could be nodulated on P. macrophyllus plants, and weak nitrogenase activity of nodules was found in acetylene reduction method. According to the physiological and biochemical characteristics of the 11 strains, GXLO 02 was selected as the representative strain. 16S rDNA full-length sequence analysis of GXLO 02 confirmed that the representative strain GXLO 02 belongs to Rhizobium sp.展开更多
Based on the previous studies on numerical taxonomy, SDS\|PAGE of whole\|cell protein and DNA hybridization, the rhizobial strains isolated from \%Kummerowia\% sp. in semi\|arid area of North\|west constituted a new s...Based on the previous studies on numerical taxonomy, SDS\|PAGE of whole\|cell protein and DNA hybridization, the rhizobial strains isolated from \%Kummerowia\% sp. in semi\|arid area of North\|west constituted a new subgroup, the 16S rDNA sequence of representative strain SH714 were tested. The unrooted phylogenetic tree was produced. In this tree, the strain SH714 with \%Sinorhizobium xinjiangensis, S. fredii, S. meliloti, S. medicae, S. saheli\% and \%S. teranga\% constituted a branch of \%Sinorhizobium.\% Within this branch, the similarity valuse of 16S rDNA sequence between strain SH714 and \%S. xinjiangesis, S. fredii, S. meliloti, S. medicae, S. saheli\% and \%S. teranga\% were 97.4%, 97.5%, 96.8%, 96.7%, 97.2% and 95.6% respectively, the values were more than 95%, this indicated that these known species should belong to the same genus. The values of DNA homology between type strains of these species were less than 70%. Thus, the strain SH714 represented a new rhizobial species, and there were some diversity between SH714 and known rhizobial species in phenotypic feature and composition of protien.展开更多
To characterize the Fe(III)-reducing bacteria,enrichment cultures were initiated by inoculating deep-sea sediment from the South China Sea(SCS)into the media with hydrous ferric oxide(HFO)as the sole electron acceptor...To characterize the Fe(III)-reducing bacteria,enrichment cultures were initiated by inoculating deep-sea sediment from the South China Sea(SCS)into the media with hydrous ferric oxide(HFO)as the sole electron acceptor.As indicated by Meta 16S rDNA Amplicon Sequencing,the microorganisms related to Fe(III)-reduction in the enrichment cultures were mainly Shewanella and Enterobacter.A new facultative Fe(III)-reducing bacterium was obtained and identified as Enterobacter sp.Nan-1 based on its 16S rRNA gene sequence and physiological characterizations.Enterobacter sp.Nan-1 was not only a mesophilic bacterium capable of reducing HFO with a wide range of salinity(4,34,40,50 and 60 g L−1)efficiently,but also a piezotolerant bacterium that can proceed Fe(III)-reduction sustainedly at hydrostatic pressures between 0.1 and 50 MPa using glucose and pyruvate as carbon source.Furthermore,the geochemical characteristics of deep-sea sediment indicated that the microbial metabolism and iron reduction both remain active in the well-developed Fe(III)-reducing zone where the strain Nan-1 was obtained.To our knowledge,Enterobacter sp.Nan-1 could serve as a new applicative Fe(III)-reducing bacterium for future investigation on the iron biogeochemical cycle and diagenetic process of organic matter in the deep-sea environment.展开更多
基金the National Natural Science Foundation of China(GrantNo.30170033)
文摘Symbiotic nitrogen fixation of rhizobia and leguminous plants is considered as the most important biologic nitrogen fixation system on earth. Symbiotic nodulation of gymnosperm Podocarpus macro-phyllus and rhizobia has never been reported. In this study, 11 endophytic bacteria strains were isolated from root nodules of P. macrophyllus and its variation P. macrophyllus var. maki. The plant infection tests on these strains indicated that the isolated strains could be nodulated on P. macrophyllus plants, and weak nitrogenase activity of nodules was found in acetylene reduction method. According to the physiological and biochemical characteristics of the 11 strains, GXLO 02 was selected as the representative strain. 16S rDNA full-length sequence analysis of GXLO 02 confirmed that the representative strain GXLO 02 belongs to Rhizobium sp.
文摘Based on the previous studies on numerical taxonomy, SDS\|PAGE of whole\|cell protein and DNA hybridization, the rhizobial strains isolated from \%Kummerowia\% sp. in semi\|arid area of North\|west constituted a new subgroup, the 16S rDNA sequence of representative strain SH714 were tested. The unrooted phylogenetic tree was produced. In this tree, the strain SH714 with \%Sinorhizobium xinjiangensis, S. fredii, S. meliloti, S. medicae, S. saheli\% and \%S. teranga\% constituted a branch of \%Sinorhizobium.\% Within this branch, the similarity valuse of 16S rDNA sequence between strain SH714 and \%S. xinjiangesis, S. fredii, S. meliloti, S. medicae, S. saheli\% and \%S. teranga\% were 97.4%, 97.5%, 96.8%, 96.7%, 97.2% and 95.6% respectively, the values were more than 95%, this indicated that these known species should belong to the same genus. The values of DNA homology between type strains of these species were less than 70%. Thus, the strain SH714 represented a new rhizobial species, and there were some diversity between SH714 and known rhizobial species in phenotypic feature and composition of protien.
基金the financial support by the Strategic Priority Research Program of the Chinese Academy of Sciences(No.XDB06020000)the Zhejiang Geological Prospecting Bureau Science Projects(No.201713)the Geological Fund of Zhejiang Province(No.20150012).
文摘To characterize the Fe(III)-reducing bacteria,enrichment cultures were initiated by inoculating deep-sea sediment from the South China Sea(SCS)into the media with hydrous ferric oxide(HFO)as the sole electron acceptor.As indicated by Meta 16S rDNA Amplicon Sequencing,the microorganisms related to Fe(III)-reduction in the enrichment cultures were mainly Shewanella and Enterobacter.A new facultative Fe(III)-reducing bacterium was obtained and identified as Enterobacter sp.Nan-1 based on its 16S rRNA gene sequence and physiological characterizations.Enterobacter sp.Nan-1 was not only a mesophilic bacterium capable of reducing HFO with a wide range of salinity(4,34,40,50 and 60 g L−1)efficiently,but also a piezotolerant bacterium that can proceed Fe(III)-reduction sustainedly at hydrostatic pressures between 0.1 and 50 MPa using glucose and pyruvate as carbon source.Furthermore,the geochemical characteristics of deep-sea sediment indicated that the microbial metabolism and iron reduction both remain active in the well-developed Fe(III)-reducing zone where the strain Nan-1 was obtained.To our knowledge,Enterobacter sp.Nan-1 could serve as a new applicative Fe(III)-reducing bacterium for future investigation on the iron biogeochemical cycle and diagenetic process of organic matter in the deep-sea environment.