In order to obtain an industrial strain with a higher L(+)-lactic acid yield, the strain Rhizopus oryzae PW352 was mutated by means of nitrogen ion beam implantation and the mutant strain Rhizopus oryzae RLC41-6 wa...In order to obtain an industrial strain with a higher L(+)-lactic acid yield, the strain Rhizopus oryzae PW352 was mutated by means of nitrogen ion beam implantation and the mutant strain Rhizopus oryzae RLC41-6 was obtained. An experimental finding was made in surprise that Rhizopus oryzae mutant RLC41-6 is not only an L(+)-lactic acid producer from corn starch but also an efficient producer of L(+)-lactic acid from xylose. Under optimal conditions, the production of L(+)-lactic acid from 100 g/L xylose reached 77.39 g/L after 144 h fed-batch fermentation, A high mutation rate and a wide mutation spectrum of low-energy ion implantation were observed in the experiment.展开更多
In order to obtain an industrial strain with a higher L(+)-lactic acid yield, the strain Rhizopus oryzae RF3608 was mutated by means of nitrogen ion beam implantation and the mutant strain RLC41-6 was isolated. Und...In order to obtain an industrial strain with a higher L(+)-lactic acid yield, the strain Rhizopus oryzae RF3608 was mutated by means of nitrogen ion beam implantation and the mutant strain RLC41-6 was isolated. Under optimal conditions the yield of L(+)-lactic acid produced in a shake-flask reached 133 g/L - 137 g/L after 36 h cultivation, indicating that the conversion rate based on glucose was as high as 88% - 91% and the productivity was 3.75 g/L.h. It was almost a 115% increase in lactic acid production compared with the original strain RF3608.展开更多
The wild type strain Rhizopus oryzae PW352 was mutated by means of nitrogen ion implantation (15 keV, 7.8×10^14 ~ 2.08 ×10^15 ions/cm^2) to find an industrial strain with a higher L(+)-lactic acid yiel...The wild type strain Rhizopus oryzae PW352 was mutated by means of nitrogen ion implantation (15 keV, 7.8×10^14 ~ 2.08 ×10^15 ions/cm^2) to find an industrial strain with a higher L(+)-lactic acid yield, and two mutants RE3303 and RF9052 were isolated. In order to discuss the mechanism primarily, Lactate Dehydrogenase of Rhizopus oryzae was studied. While the two mutants produced L(+)-lactic acid by 75% more than the wild strain did, their specific activity of Lactate Dehydrogenase was found to be higher than that in the wild strain. The optimum temperature of Lactate Dehydrogenase in Rhizopus oryzae RF9052 was higher. Compared to the wild strain, the Michaelis constant (Km) value of Lactate Dehydrogenase in the mutants was Changed. All these changes show that L(+)-lactic acid production has a correlation with the specific activity of Lactate Dehydrogenase. The low-energy ions, implanted into the strain, may improve the specific activity of Lactate Dehydrogenase by influencing its gene structure and protein structure.展开更多
In order to get an industrial strain which can yield a high concentration of lactic acid for ISPR (in situ product removal), the original strain Rhizopus oryzae RE3303 was mutated by low-energy ion beam implantation...In order to get an industrial strain which can yield a high concentration of lactic acid for ISPR (in situ product removal), the original strain Rhizopus oryzae RE3303 was mutated by low-energy ion beam implantation. A mutant RK02 was screened, and the factors such as the substrate concentration, nitrogen source concentration, inoculum size, seed age, aeration and temperature that affect the production of lactic acid were studied in detail. Under optimal con- ditions, the maximum concentration of L(+)-lactic acid reached 34.85 g/L after 30 h shake-flask cultivation without adding any neutralisation (5% Glucose added), which was a 146% increase in lactic acid production after ion implantation compared with the original strain. It was also shown that RK02 can be used in ISPR to reduce the number of times of separation.展开更多
Immobilized Rhizopus oryzae culturing may be a solution to the inhibited production of L(+)-lactic acid in submerged fermentation, which is caused by aggregated mycelia floc. In the present study, a R. oryzae muta...Immobilized Rhizopus oryzae culturing may be a solution to the inhibited production of L(+)-lactic acid in submerged fermentation, which is caused by aggregated mycelia floc. In the present study, a R. oryzae mutant (RL6041) with a 90% conversion rate of glucose into L-lactic acid was obtained by N+ implantation under the optimized conditions of a beam energy of 15 keV and a dose of 2.6 ×10^15 ions/cm^2. Using polyurethane foam as the immobilization matrix, the optimal L-lactic acid production conditions were determined as 4 mm polyurethane foam, 150 r/min, 50 g/L ~ 80 g/L of initial glucose, 38℃ and pH 6.0. 15-cycle repeated productions of L-lactic acid by immobilized RL6041 were performed under the optimized culturing conditions and over 80% of the glucose was converted into L-lactic acid in 30 hours on average. The results show that immobilized RL6041 is a promising candidate for continuous L-lactic acid production.展开更多
基金supported by the Key‘863’Fund of China (No.2006AA020102)Key Technology Research and Development Program of Anhui Province in 2007 (No.07010202076)
文摘In order to obtain an industrial strain with a higher L(+)-lactic acid yield, the strain Rhizopus oryzae PW352 was mutated by means of nitrogen ion beam implantation and the mutant strain Rhizopus oryzae RLC41-6 was obtained. An experimental finding was made in surprise that Rhizopus oryzae mutant RLC41-6 is not only an L(+)-lactic acid producer from corn starch but also an efficient producer of L(+)-lactic acid from xylose. Under optimal conditions, the production of L(+)-lactic acid from 100 g/L xylose reached 77.39 g/L after 144 h fed-batch fermentation, A high mutation rate and a wide mutation spectrum of low-energy ion implantation were observed in the experiment.
基金The project supported by the Tenth Five-Year Plan Period National Key Technologies R & D Program of China (under GrantNo. 2001BA302B)
文摘In order to obtain an industrial strain with a higher L(+)-lactic acid yield, the strain Rhizopus oryzae RF3608 was mutated by means of nitrogen ion beam implantation and the mutant strain RLC41-6 was isolated. Under optimal conditions the yield of L(+)-lactic acid produced in a shake-flask reached 133 g/L - 137 g/L after 36 h cultivation, indicating that the conversion rate based on glucose was as high as 88% - 91% and the productivity was 3.75 g/L.h. It was almost a 115% increase in lactic acid production compared with the original strain RF3608.
基金National Natural Science Foundation of China(No.20576132)
文摘The wild type strain Rhizopus oryzae PW352 was mutated by means of nitrogen ion implantation (15 keV, 7.8×10^14 ~ 2.08 ×10^15 ions/cm^2) to find an industrial strain with a higher L(+)-lactic acid yield, and two mutants RE3303 and RF9052 were isolated. In order to discuss the mechanism primarily, Lactate Dehydrogenase of Rhizopus oryzae was studied. While the two mutants produced L(+)-lactic acid by 75% more than the wild strain did, their specific activity of Lactate Dehydrogenase was found to be higher than that in the wild strain. The optimum temperature of Lactate Dehydrogenase in Rhizopus oryzae RF9052 was higher. Compared to the wild strain, the Michaelis constant (Km) value of Lactate Dehydrogenase in the mutants was Changed. All these changes show that L(+)-lactic acid production has a correlation with the specific activity of Lactate Dehydrogenase. The low-energy ions, implanted into the strain, may improve the specific activity of Lactate Dehydrogenase by influencing its gene structure and protein structure.
基金the Eleventh Five-Year Planthe National 863 Program(No.2006AA020101)
文摘In order to get an industrial strain which can yield a high concentration of lactic acid for ISPR (in situ product removal), the original strain Rhizopus oryzae RE3303 was mutated by low-energy ion beam implantation. A mutant RK02 was screened, and the factors such as the substrate concentration, nitrogen source concentration, inoculum size, seed age, aeration and temperature that affect the production of lactic acid were studied in detail. Under optimal con- ditions, the maximum concentration of L(+)-lactic acid reached 34.85 g/L after 30 h shake-flask cultivation without adding any neutralisation (5% Glucose added), which was a 146% increase in lactic acid production after ion implantation compared with the original strain. It was also shown that RK02 can be used in ISPR to reduce the number of times of separation.
基金Key 863 fund of China(No.2006AA020102)the Key Technologies Research and Development Programme of Anhui Province(07010202076)
文摘Immobilized Rhizopus oryzae culturing may be a solution to the inhibited production of L(+)-lactic acid in submerged fermentation, which is caused by aggregated mycelia floc. In the present study, a R. oryzae mutant (RL6041) with a 90% conversion rate of glucose into L-lactic acid was obtained by N+ implantation under the optimized conditions of a beam energy of 15 keV and a dose of 2.6 ×10^15 ions/cm^2. Using polyurethane foam as the immobilization matrix, the optimal L-lactic acid production conditions were determined as 4 mm polyurethane foam, 150 r/min, 50 g/L ~ 80 g/L of initial glucose, 38℃ and pH 6.0. 15-cycle repeated productions of L-lactic acid by immobilized RL6041 were performed under the optimized culturing conditions and over 80% of the glucose was converted into L-lactic acid in 30 hours on average. The results show that immobilized RL6041 is a promising candidate for continuous L-lactic acid production.