Bacteria play critical roles in regulating soil phosphorus(P) cycling. The effects of interactions between crops and soil P-availability on bacterial communities and the feedback regulation of soil P cycling by the ba...Bacteria play critical roles in regulating soil phosphorus(P) cycling. The effects of interactions between crops and soil P-availability on bacterial communities and the feedback regulation of soil P cycling by the bacterial community modifications are poorly understood. Here, six soybean(Glycine max) genotypes with differences in P efficiency were cultivated in acidic soils with long-term sufficient or deficient P-fertilizer treatments. The acid phosphatase(AcP) activities, organic-P concentrations and associated bacterial community compositions were determined in bulk and rhizosphere soils. The results showed that both soybean plant P content and the soil AcP activity were negatively correlated with soil organic-P concentration in P-deficient acidic soils. Soil P-availability affected the ɑ-diversity of bacteria in both bulk and rhizosphere soils. However, soybean had a stronger effect on the bacterial community composition, as reflected by the similar biomarker bacteria in the rhizosphere soils in both P-treatments. The relative abundance of biomarker bacteria Proteobacteria was strongly correlated with soil organic-P concentration and AcP activity in low-P treatments. Further high-throughput sequencing of the phoC gene revealed an obvious shift in Proteobacteria groups between bulk soils and rhizosphere soils, which was emphasized by the higher relative abundances of Cupriavidus and Klebsiella, and lower relative abundance of Xanthomonas in rhizosphere soils. Among them, Cupriavidus was the dominant phoC bacterial genus, and it was negatively correlated with the soil organic-P concentration. These findings suggest that soybean growth relies on organic-P mineralization in P-deficient acidic soils, which might be partially achieved by recruiting specific phoCharboring bacteria, such as Cupriavidus.展开更多
The addition of biochar(BC)or Arbuscular mycorrhizal fungi(AMF)alone has been reported to promote plant growth,while their synergistic effects on Allium schoenoprasum root morphology and rhizosphere fungal community i...The addition of biochar(BC)or Arbuscular mycorrhizal fungi(AMF)alone has been reported to promote plant growth,while their synergistic effects on Allium schoenoprasum root morphology and rhizosphere fungal community in barren soil is still unclear.In this study,we investigated the effects of BC and AMF(Funneliformis mosseae)on plant growth and root morphology in barren soil and revealed the structure of soil fungal communities Therefore,a greenhouse pot trial consisting of five treatments was enforced.The results showed that the combination of biochar and AMF significantly improved plant biomass,nutrient uptake,mycorrhizal colonization rates and soil properties and significantly impacted rhizosphere fungal community composition and structure.Biochar significantly increased the fungal community stability and enhanced their positive correlation with plants.Our findings indicated that the combination of AMF and biochar play synergic role for plant growth and rhizosphere fungal community in barren soil.展开更多
The objective of this work was to carry out a morphological characterization of arbuscular mycorrhizal fungi in the rhizosphere of Xanthosoma sagittifolium L. Schott plants. The plant material used was the white and r...The objective of this work was to carry out a morphological characterization of arbuscular mycorrhizal fungi in the rhizosphere of Xanthosoma sagittifolium L. Schott plants. The plant material used was the white and red cultivars of X. sagittifolium, belonging to age intervals of 3 - 6, 6 - 9, and 9 - 12 months. Three harvest sites were chosen in the Central Region of Cameroon. In each site, soil from the rhizosphere and plant roots was collected in a randomized manner. In the field, the agronomic parameters were evaluated. The physicochemical characteristics of the soils, the mycorrhization index, and the morphological characterization of the mycorrhizal types of each site were carried out. The results obtained show that the agronomic growth parameters varied significantly using the Student Newman and Keuls Test depending on the harvest sites. The soils’ pH in all sites was acidic and ranged between 4.6 and 5.8. The Nkometou site has a loamy texture while the Olembe and Soa sites have loam-clay-sandy and loam-clay textures respectively. The highest mycorrhization frequencies appeared at the Nkometou site, with 75 and 87.33% of the white and red cultivars plant roots at 6 - 9 and 3 - 6 months. The relative abundance of AMF arbuscular mycorrhizal fungal spores in the rhizosphere of X. sagittifolium plants varied with age and cultivar. There were 673 spores between 9 - 12 months in Nkometou in the red cultivar. Six AMF genera were identified in all the different soils collected: Acaulospora sp., Funneliformis sp., Gigaspora sp., Glomus sp., Scutellospora sp., and Septoglomus sp. The genus Glomus sp. was the most present at all age intervals in both cultivars.展开更多
[Objectives]To make full use of crop rhizosphere microbial resources.[Methods]Illumina NovaSeq sequencing platform was used to analyze the richness and diversity of microbial community structure in rhizosphere soil of...[Objectives]To make full use of crop rhizosphere microbial resources.[Methods]Illumina NovaSeq sequencing platform was used to analyze the richness and diversity of microbial community structure in rhizosphere soil of rice and maize crops in Baitu Town,Gaoyao District,Zhaoqing City.[Results]A total of 14936 OTUs of bacteria and 1905 OTUs of fungi were obtained from three samples of rice rhizosphere soil,and 13437 OTUs of bacteria and 1413 OTUs of fungi were obtained from three samples of maize rhizosphere soil.The diversity and richness of bacterial communities were higher than those of fungi.There are differences in soil bacterial and fungal communities among different crop samples.The analysis of species with bacteria difference at genus level among crop rhizosphere soil samples showed that 18 genera with significant differences were obtained from 6 samples;species analysis of fungi at the genus level showed that 3 genera with significant differences were obtained from 6 samples.[Conclusions]The research results of this paper have positive significance for the development and utilization of soil resources in Zhaoqing City and the full exploitation of rice and maize rhizosphere microbial resources.展开更多
Soil microorganisms play important roles in nitrogen transformation. The aim of this study was to characterize changes in the activity of nitrogen transformation enzymes and the abundance of nitrogen function genes in...Soil microorganisms play important roles in nitrogen transformation. The aim of this study was to characterize changes in the activity of nitrogen transformation enzymes and the abundance of nitrogen function genes in rhizosphere soil aerated using three different methods(continuous flooding(CF), continuous flooding and aeration(CFA), and alternate wetting and drying(AWD)). The abundances of amoA ammonia-oxidizing archaea(AOA) and ammonia-oxidizing bacteria(AOB), nirS, nirK, and nifH genes, and the activities of urease, protease, ammonia oxidase, nitrate reductase, and nitrite reductase were measured at the tillering(S1), heading(S2), and ripening(S3) stages. We analyzed the relationships of the aforementioned microbial activity indices, in addition to soil microbial biomass carbon(MBC) and soil microbial biomass nitrogen(MBN), with the concentration of soil nitrate and ammonium nitrogen. The abundance of nitrogen function genes and the activities of nitrogen invertase in rice rhizosphere soil were higher at S2 compared with S1 and S3 in all treatments. AWD and CFA increased the abundance of amoA and nifH genes, and the activities of urease, protease, and ammonia oxidase, and decreased the abundance of nirS and nirK genes and the activities of nitrate reductase and nitrite reductase, with the effect of AWD being particularly strong. During the entire growth period, the mean abundances of the AOA amoA, AOB amoA, and nifH genes were 2.9, 5.8, and 3.0 higher in the AWD treatment than in the CF treatment, respectively, and the activities of urease, protease, and ammonia oxidase were 1.1, 0.5, and 0.7 higher in the AWD treatment than in the CF treatment, respectively. The abundances of the nirS and nirK genes, and the activities of nitrate reductase and nitrite reductase were 73.6, 84.8, 10.3 and 36.5% lower in the AWD treatment than in the CF treatment, respectively. The abundances of the AOA amoA, AOB amoA, and nifH genes were significantly and positively correlated with the activities of urease, protease, and ammonia oxidase, and the abundances of the nirS and nirK genes were significantly positively correlated with the activities of nitrate reductase. All the above indicators were positively correlated with soil MBC and MBN. In sum, microbial activity related to nitrogen transformation in rice rhizosphere soil was highest at S2. Aeration can effectively increase the activity of most nitrogen-converting microorganisms and MBN, and thus promote soil nitrogen transformation.展开更多
The soybean rhizosphere has a specific microbial community,but the differences in microbial community structure between different soybean genotypes have not been explained.The present study analyzed the structure of t...The soybean rhizosphere has a specific microbial community,but the differences in microbial community structure between different soybean genotypes have not been explained.The present study analyzed the structure of the rhizosphere microbial community in three soybean genotypes.Differences in rhizosphere microbial communities between different soybean genotypes were verified using diversity testing and community composition,and each genotype had a specific rhizosphere microbial community composition.Co-occurrence network analysis found that different genotype plant hosts had different rhizosphere microbial networks.The relationship between rhizobia and rhizosphere microorganisms in the network also exhibited significant differences between different genotype plant hosts.The ecological function prediction found that different genotypes of soybean recruited the specific rhizosphere microbial community.These results demonstrated that soybean genotype regulated rhizosphere microbial community structure differences.The study provides a reference and theoretical support for developing soybean microbial inoculum in the future.展开更多
Sexual dimorphism of plants shapes the diff erent morphology and physiology between males and females.However,it is still unclear whether it infl uences belowground ecological processes.In this study,rhizosphere soil ...Sexual dimorphism of plants shapes the diff erent morphology and physiology between males and females.However,it is still unclear whether it infl uences belowground ecological processes.In this study,rhizosphere soil of male and female Populus deltoides and bulk soil were collected from an 18-year plantation(male and female trees mix-planted)and grouped into three soil compartments.Soil carbon(C),nitrogen(N)and phosphorus(P)levels were determined,and soil bacterial communities were analyzed by high-throughput sequencing.The results showed the less total carbon and total organic carbon,the more nutrients(available phosphorus,nitrate nitrogen and ammonium nitrogen)available in the rhizosphere soils of female poplars than soils of males.However,α-diversity indices of the rhizosphere bacterial communities under male plants were signifi-cantly higher.Principal component analysis showed that the bacterial communities were signifi cantly diff erent between the male and female soil compartments.Further,the bacterial co-occurrence network in soil under male trees had more nodes and edges than under females.BugBase analysis showed the more functional bacteria taxa related to biofi lm formation and antioxidation under males.The results indicate that soils under male poplars had more diverse and more complex co-occurrence networks of the rhizosphere bacterial community than soils under female trees,implying that male poplars might have better environmental adaptability.The study provides insight into the diff erent soil-microbe interactions of dioecious plants.More details about the infl uencing mechanism of sexual dimorphism on rhizosphere soil bacterial communities need to be further studied.展开更多
Tiger nut is a bioenergy crop planted in arid areas of northern China to supply oil and adjust the planting structure.However,in the western region of Inner Mongolia Autonomous Region,China,less water resources have r...Tiger nut is a bioenergy crop planted in arid areas of northern China to supply oil and adjust the planting structure.However,in the western region of Inner Mongolia Autonomous Region,China,less water resources have resulted in a scarcity of available farmland,which has posed a huge obstacle to planting tiger nut.Cultivation of tiger nut on marginal land can effectively solve this problem.To fully unlock the production potential of tiger nut on marginal land,it is crucial for managers to have comprehensive information on the adaptive mechanism and nutrient requirement of tiger nut in different growth periods.This study aims to explore these key information from the perspective of nutrient coordination strategy of tiger nut in different growth periods and their relationship with rhizosphere soil nutrients.Three fertilization treatments including no fertilization(N:P(nitrogen:phosphorous)=0:0),traditional fertilization(N:P=15:15),and additional N fertilizer(N:P=60:15)were implemented on marginal land in the Dengkou County.Plant and soil samples were collected in three growth periods,including stolon tillering period,tuber expanding period,and tuber mature period.Under no fertilization,there was a significant correlation between N and P contents of tiger nut roots and tubers and the same nutrients in the rhizosphere soil(P<0.05).Carbon(C),N,and P contents of roots were significantly higher than those of leaves(P<0.05),and the C:N ratio of all organs was higher than those under other treatments before tuber maturity(P<0.05).Under traditional fertilization,there was a significant impact on the P content of tiger nut tubers(P<0.05).Under additional N fertilizer,the accumulation rate of N and P was faster in stolons than in tubers(P<0.05)with lower N:P ratio in stolons during the tuber expansion period(P<0.05),but higher N:P ratio in tubers(P<0.05).The limited availability of nutrients in the rhizosphere soil prompts tiger nut to increase the C:N ratio,improving N utilization efficiency,and maintaining N:P ratio in tubers.Elevated N levels in the rhizosphere soil decrease the C:N ratio of tiger nut organs and N:P ratio in stolons,promoting rapid stolon growth and shoot production.Supplementary P is necessary during tuber expansion,while a higher proportion of N in fertilizers is crucial for the aboveground biomass production of tiger nut.展开更多
Little is known about C-N-P stoichiometries and content in teak(Tectona grandis)plantations in South China,which are mostly sited on hilly areas with lateritic soil,and the effect of slope position on the accumulation...Little is known about C-N-P stoichiometries and content in teak(Tectona grandis)plantations in South China,which are mostly sited on hilly areas with lateritic soil,and the effect of slope position on the accumulation of these elements in trees and rhizosphere soils.Here we analyzed the C,N,P content and stoichiometry in leaves,fine roots and rhizosphere soils of trees on the upper and lower slopes of a 12-year-old teak plantation.The Kraft classification system of tree status was used to sample dominant,subdominant and mean trees at each slope position.The results showed that the C,N and P contents in leaves were higher than in fine roots and rhizosphere soils.The lowest C/N,C/P and N/P ratios were found in rhizosphere soils,and the C/N and C/P ratios in fine roots were higher than in leaves.Nutrient accumulation in leaves,fine roots and rhizosphere soils were significantly influenced by slope position and tree class with their interaction mainly showing a greater effect on rhizosphere soils.Leaf C content and C/N ratio,fine root C and P contents,and C/N and C/P ratios all increased distinctly with declining slope position.The contents of organic matter(SOM),ammonium(NH4+-N),nitrate-nitrogen(NO3--N)and available potassium(AK)in rhizosphere soils were mainly enriched on upper slopes,but exchange calcium(ECa),available phosphorus(AP),and pH were relatively lower.Variations in the C,N and P stoichiometries in trees were mainly attributed to the differences in rhizosphere soil properties.N and P contents showed significant positive linear relationships between leaf and rhizosphere soil,and C content negative linear correlation among leaves,fine roots and rhizosphere soils.Chemical properties of rhizosphere soils,particularly C/N and NH4+-N,had significant effects on the leaf nutrients in trees on the upper slope.Correspondingly,rhizosphere soil properties mainly influenced fine root nutrients on the lower slope,and soil AK was the major influencing factor.Overall,these results offer new insights for the sustainability and management of teak plantations in hilly areas.展开更多
During production process,the below mentioned errors appeared in the original article and inadvertently published with error.The corrections are as given below.
By studying the diversity and community structure of rhizosphere soil fungi of different plants in the tundra on the northern slope of Changbai Mountain, it provides theoretical support for the restoration of environm...By studying the diversity and community structure of rhizosphere soil fungi of different plants in the tundra on the northern slope of Changbai Mountain, it provides theoretical support for the restoration of environmental degradation and in-depth study of fungal diversity in the tundra of Changbai Mountain. High-throughput sequencing technology was used to determine the ITS1 region of fungal amplicons, so as to analyze the diversity of fungal communities in the rhizosphere soil of six plants in the tundra of Changbai Mountain, and to analyze the correlation between the environment and the diversity and richness of fungal communities in combination with relevant soil physical and chemical factors. The diversity and richness of fungal community in the rhizosphere soil of six plants in Changbai Mountain tundra were different. The Simpson and Shannon indexes of Saxifraga stolonifera Curt were the highest, and the richness of fungal community in Dryas octopetala was the highest. The analysis of fungal community composition showed that the fungal colonies in plant rhizosphere soil samples mainly belonged to Ascomycota and Basidiomycota, which were the main dominant phyla. Mortierella, Fusarium and Sordariomycetes are common fungal genera in the rhizosphere soil of six plants, but their abundances are different among different plants. Water content was negatively correlated with fungal diversity, and TP was positively correlated with fungal community diversity. There were some differences in the composition and diversity of rhizosphere soil fungal communities of six plants in Changbai Mountain tundra. Ascomycota and Basidiomycota were the main soil fungal phyla in the rhizosphere of six plants in Changbai Mountain tundra. The results could provide theoretical guidance for ecological protection of Changbai Mountain tundra.展开更多
基金This work was supported by grants from the National Key Research and Development Program of China(2021YFF1000500)the Open Competition Program of Ten Major Directions of Agricultural Science and Technology Innovation for the 14th Five-Year Plan of Guangdong Province,China(2022SDZG07)+3 种基金the Key Areas Research and Development Programs of Guangdong Province,China(2022B0202060005)the STICGrantof China(SGDX20210823103535007)the Major Program of Guangdong Basic and Applied Research,China(2019B030302006)the Natural Science Foundation of Guangdong Province,China(2021A1515010826and 2020A1515110261).
文摘Bacteria play critical roles in regulating soil phosphorus(P) cycling. The effects of interactions between crops and soil P-availability on bacterial communities and the feedback regulation of soil P cycling by the bacterial community modifications are poorly understood. Here, six soybean(Glycine max) genotypes with differences in P efficiency were cultivated in acidic soils with long-term sufficient or deficient P-fertilizer treatments. The acid phosphatase(AcP) activities, organic-P concentrations and associated bacterial community compositions were determined in bulk and rhizosphere soils. The results showed that both soybean plant P content and the soil AcP activity were negatively correlated with soil organic-P concentration in P-deficient acidic soils. Soil P-availability affected the ɑ-diversity of bacteria in both bulk and rhizosphere soils. However, soybean had a stronger effect on the bacterial community composition, as reflected by the similar biomarker bacteria in the rhizosphere soils in both P-treatments. The relative abundance of biomarker bacteria Proteobacteria was strongly correlated with soil organic-P concentration and AcP activity in low-P treatments. Further high-throughput sequencing of the phoC gene revealed an obvious shift in Proteobacteria groups between bulk soils and rhizosphere soils, which was emphasized by the higher relative abundances of Cupriavidus and Klebsiella, and lower relative abundance of Xanthomonas in rhizosphere soils. Among them, Cupriavidus was the dominant phoC bacterial genus, and it was negatively correlated with the soil organic-P concentration. These findings suggest that soybean growth relies on organic-P mineralization in P-deficient acidic soils, which might be partially achieved by recruiting specific phoCharboring bacteria, such as Cupriavidus.
基金the Key Research and Development Program of Anhui Province(Grant No.202204c06020021)Natural Science Foundation of China(Grant Nos.U21A20235 and 32201308).
文摘The addition of biochar(BC)or Arbuscular mycorrhizal fungi(AMF)alone has been reported to promote plant growth,while their synergistic effects on Allium schoenoprasum root morphology and rhizosphere fungal community in barren soil is still unclear.In this study,we investigated the effects of BC and AMF(Funneliformis mosseae)on plant growth and root morphology in barren soil and revealed the structure of soil fungal communities Therefore,a greenhouse pot trial consisting of five treatments was enforced.The results showed that the combination of biochar and AMF significantly improved plant biomass,nutrient uptake,mycorrhizal colonization rates and soil properties and significantly impacted rhizosphere fungal community composition and structure.Biochar significantly increased the fungal community stability and enhanced their positive correlation with plants.Our findings indicated that the combination of AMF and biochar play synergic role for plant growth and rhizosphere fungal community in barren soil.
文摘The objective of this work was to carry out a morphological characterization of arbuscular mycorrhizal fungi in the rhizosphere of Xanthosoma sagittifolium L. Schott plants. The plant material used was the white and red cultivars of X. sagittifolium, belonging to age intervals of 3 - 6, 6 - 9, and 9 - 12 months. Three harvest sites were chosen in the Central Region of Cameroon. In each site, soil from the rhizosphere and plant roots was collected in a randomized manner. In the field, the agronomic parameters were evaluated. The physicochemical characteristics of the soils, the mycorrhization index, and the morphological characterization of the mycorrhizal types of each site were carried out. The results obtained show that the agronomic growth parameters varied significantly using the Student Newman and Keuls Test depending on the harvest sites. The soils’ pH in all sites was acidic and ranged between 4.6 and 5.8. The Nkometou site has a loamy texture while the Olembe and Soa sites have loam-clay-sandy and loam-clay textures respectively. The highest mycorrhization frequencies appeared at the Nkometou site, with 75 and 87.33% of the white and red cultivars plant roots at 6 - 9 and 3 - 6 months. The relative abundance of AMF arbuscular mycorrhizal fungal spores in the rhizosphere of X. sagittifolium plants varied with age and cultivar. There were 673 spores between 9 - 12 months in Nkometou in the red cultivar. Six AMF genera were identified in all the different soils collected: Acaulospora sp., Funneliformis sp., Gigaspora sp., Glomus sp., Scutellospora sp., and Septoglomus sp. The genus Glomus sp. was the most present at all age intervals in both cultivars.
基金Supported by Guangdong Province Rural Science and Technology Commissioner Project(KTP20240693)Zhaoqing University Project(QN202329)+3 种基金Science and Technology Innovation Guidance Project of Zhaoqing(202304038001)Undergraduate Innovation and Entrepreneurship Training Program(202410580011&X202310580120)The Third Batch of Innovation Research Team of Zhaoqing University(05)Quality Engineering and Teaching Reform Project of Zhaoqing University(zlgc202229,zlgc202261).
文摘[Objectives]To make full use of crop rhizosphere microbial resources.[Methods]Illumina NovaSeq sequencing platform was used to analyze the richness and diversity of microbial community structure in rhizosphere soil of rice and maize crops in Baitu Town,Gaoyao District,Zhaoqing City.[Results]A total of 14936 OTUs of bacteria and 1905 OTUs of fungi were obtained from three samples of rice rhizosphere soil,and 13437 OTUs of bacteria and 1413 OTUs of fungi were obtained from three samples of maize rhizosphere soil.The diversity and richness of bacterial communities were higher than those of fungi.There are differences in soil bacterial and fungal communities among different crop samples.The analysis of species with bacteria difference at genus level among crop rhizosphere soil samples showed that 18 genera with significant differences were obtained from 6 samples;species analysis of fungi at the genus level showed that 3 genera with significant differences were obtained from 6 samples.[Conclusions]The research results of this paper have positive significance for the development and utilization of soil resources in Zhaoqing City and the full exploitation of rice and maize rhizosphere microbial resources.
基金supported by the Key Research and Development Program of Zhejiang Province,China(2022C02008)the National Natural Science Foundation of China(31401343)+1 种基金the earmarked fund for China Agriculture Research System(CARS-01)the Agricultural Science and Technology Innovation Program of Chinese Academy of Agricultural Sciences(CAASZDRW202001)。
文摘Soil microorganisms play important roles in nitrogen transformation. The aim of this study was to characterize changes in the activity of nitrogen transformation enzymes and the abundance of nitrogen function genes in rhizosphere soil aerated using three different methods(continuous flooding(CF), continuous flooding and aeration(CFA), and alternate wetting and drying(AWD)). The abundances of amoA ammonia-oxidizing archaea(AOA) and ammonia-oxidizing bacteria(AOB), nirS, nirK, and nifH genes, and the activities of urease, protease, ammonia oxidase, nitrate reductase, and nitrite reductase were measured at the tillering(S1), heading(S2), and ripening(S3) stages. We analyzed the relationships of the aforementioned microbial activity indices, in addition to soil microbial biomass carbon(MBC) and soil microbial biomass nitrogen(MBN), with the concentration of soil nitrate and ammonium nitrogen. The abundance of nitrogen function genes and the activities of nitrogen invertase in rice rhizosphere soil were higher at S2 compared with S1 and S3 in all treatments. AWD and CFA increased the abundance of amoA and nifH genes, and the activities of urease, protease, and ammonia oxidase, and decreased the abundance of nirS and nirK genes and the activities of nitrate reductase and nitrite reductase, with the effect of AWD being particularly strong. During the entire growth period, the mean abundances of the AOA amoA, AOB amoA, and nifH genes were 2.9, 5.8, and 3.0 higher in the AWD treatment than in the CF treatment, respectively, and the activities of urease, protease, and ammonia oxidase were 1.1, 0.5, and 0.7 higher in the AWD treatment than in the CF treatment, respectively. The abundances of the nirS and nirK genes, and the activities of nitrate reductase and nitrite reductase were 73.6, 84.8, 10.3 and 36.5% lower in the AWD treatment than in the CF treatment, respectively. The abundances of the AOA amoA, AOB amoA, and nifH genes were significantly and positively correlated with the activities of urease, protease, and ammonia oxidase, and the abundances of the nirS and nirK genes were significantly positively correlated with the activities of nitrate reductase. All the above indicators were positively correlated with soil MBC and MBN. In sum, microbial activity related to nitrogen transformation in rice rhizosphere soil was highest at S2. Aeration can effectively increase the activity of most nitrogen-converting microorganisms and MBN, and thus promote soil nitrogen transformation.
基金funded by the Key Research and Development Projects of Heilongjiang Province, China (GA21B007 and GZ20210014)the Basic Research Fees of Universities in Heilongjiang Province, China (135409103)。
文摘The soybean rhizosphere has a specific microbial community,but the differences in microbial community structure between different soybean genotypes have not been explained.The present study analyzed the structure of the rhizosphere microbial community in three soybean genotypes.Differences in rhizosphere microbial communities between different soybean genotypes were verified using diversity testing and community composition,and each genotype had a specific rhizosphere microbial community composition.Co-occurrence network analysis found that different genotype plant hosts had different rhizosphere microbial networks.The relationship between rhizobia and rhizosphere microorganisms in the network also exhibited significant differences between different genotype plant hosts.The ecological function prediction found that different genotypes of soybean recruited the specific rhizosphere microbial community.These results demonstrated that soybean genotype regulated rhizosphere microbial community structure differences.The study provides a reference and theoretical support for developing soybean microbial inoculum in the future.
基金supported by the National Natural Science Foundation of China(32071751)the National key research and development program(2021YFD220120102)+1 种基金the Natural Science Foundation of Shandong Province(ZR2018ZC08N3)the funds of the Shandong Double Tops Program(Grant No.SYL2017XTTD03).
文摘Sexual dimorphism of plants shapes the diff erent morphology and physiology between males and females.However,it is still unclear whether it infl uences belowground ecological processes.In this study,rhizosphere soil of male and female Populus deltoides and bulk soil were collected from an 18-year plantation(male and female trees mix-planted)and grouped into three soil compartments.Soil carbon(C),nitrogen(N)and phosphorus(P)levels were determined,and soil bacterial communities were analyzed by high-throughput sequencing.The results showed the less total carbon and total organic carbon,the more nutrients(available phosphorus,nitrate nitrogen and ammonium nitrogen)available in the rhizosphere soils of female poplars than soils of males.However,α-diversity indices of the rhizosphere bacterial communities under male plants were signifi-cantly higher.Principal component analysis showed that the bacterial communities were signifi cantly diff erent between the male and female soil compartments.Further,the bacterial co-occurrence network in soil under male trees had more nodes and edges than under females.BugBase analysis showed the more functional bacteria taxa related to biofi lm formation and antioxidation under males.The results indicate that soils under male poplars had more diverse and more complex co-occurrence networks of the rhizosphere bacterial community than soils under female trees,implying that male poplars might have better environmental adaptability.The study provides insight into the diff erent soil-microbe interactions of dioecious plants.More details about the infl uencing mechanism of sexual dimorphism on rhizosphere soil bacterial communities need to be further studied.
基金supported by the National Key Research and Development Program of China(2019YFC0507600,2019YFC0507601).
文摘Tiger nut is a bioenergy crop planted in arid areas of northern China to supply oil and adjust the planting structure.However,in the western region of Inner Mongolia Autonomous Region,China,less water resources have resulted in a scarcity of available farmland,which has posed a huge obstacle to planting tiger nut.Cultivation of tiger nut on marginal land can effectively solve this problem.To fully unlock the production potential of tiger nut on marginal land,it is crucial for managers to have comprehensive information on the adaptive mechanism and nutrient requirement of tiger nut in different growth periods.This study aims to explore these key information from the perspective of nutrient coordination strategy of tiger nut in different growth periods and their relationship with rhizosphere soil nutrients.Three fertilization treatments including no fertilization(N:P(nitrogen:phosphorous)=0:0),traditional fertilization(N:P=15:15),and additional N fertilizer(N:P=60:15)were implemented on marginal land in the Dengkou County.Plant and soil samples were collected in three growth periods,including stolon tillering period,tuber expanding period,and tuber mature period.Under no fertilization,there was a significant correlation between N and P contents of tiger nut roots and tubers and the same nutrients in the rhizosphere soil(P<0.05).Carbon(C),N,and P contents of roots were significantly higher than those of leaves(P<0.05),and the C:N ratio of all organs was higher than those under other treatments before tuber maturity(P<0.05).Under traditional fertilization,there was a significant impact on the P content of tiger nut tubers(P<0.05).Under additional N fertilizer,the accumulation rate of N and P was faster in stolons than in tubers(P<0.05)with lower N:P ratio in stolons during the tuber expansion period(P<0.05),but higher N:P ratio in tubers(P<0.05).The limited availability of nutrients in the rhizosphere soil prompts tiger nut to increase the C:N ratio,improving N utilization efficiency,and maintaining N:P ratio in tubers.Elevated N levels in the rhizosphere soil decrease the C:N ratio of tiger nut organs and N:P ratio in stolons,promoting rapid stolon growth and shoot production.Supplementary P is necessary during tuber expansion,while a higher proportion of N in fertilizers is crucial for the aboveground biomass production of tiger nut.
基金funded by the National Key Research and Development Program(grant number 2017YFD0601100)。
文摘Little is known about C-N-P stoichiometries and content in teak(Tectona grandis)plantations in South China,which are mostly sited on hilly areas with lateritic soil,and the effect of slope position on the accumulation of these elements in trees and rhizosphere soils.Here we analyzed the C,N,P content and stoichiometry in leaves,fine roots and rhizosphere soils of trees on the upper and lower slopes of a 12-year-old teak plantation.The Kraft classification system of tree status was used to sample dominant,subdominant and mean trees at each slope position.The results showed that the C,N and P contents in leaves were higher than in fine roots and rhizosphere soils.The lowest C/N,C/P and N/P ratios were found in rhizosphere soils,and the C/N and C/P ratios in fine roots were higher than in leaves.Nutrient accumulation in leaves,fine roots and rhizosphere soils were significantly influenced by slope position and tree class with their interaction mainly showing a greater effect on rhizosphere soils.Leaf C content and C/N ratio,fine root C and P contents,and C/N and C/P ratios all increased distinctly with declining slope position.The contents of organic matter(SOM),ammonium(NH4+-N),nitrate-nitrogen(NO3--N)and available potassium(AK)in rhizosphere soils were mainly enriched on upper slopes,but exchange calcium(ECa),available phosphorus(AP),and pH were relatively lower.Variations in the C,N and P stoichiometries in trees were mainly attributed to the differences in rhizosphere soil properties.N and P contents showed significant positive linear relationships between leaf and rhizosphere soil,and C content negative linear correlation among leaves,fine roots and rhizosphere soils.Chemical properties of rhizosphere soils,particularly C/N and NH4+-N,had significant effects on the leaf nutrients in trees on the upper slope.Correspondingly,rhizosphere soil properties mainly influenced fine root nutrients on the lower slope,and soil AK was the major influencing factor.Overall,these results offer new insights for the sustainability and management of teak plantations in hilly areas.
文摘During production process,the below mentioned errors appeared in the original article and inadvertently published with error.The corrections are as given below.
文摘By studying the diversity and community structure of rhizosphere soil fungi of different plants in the tundra on the northern slope of Changbai Mountain, it provides theoretical support for the restoration of environmental degradation and in-depth study of fungal diversity in the tundra of Changbai Mountain. High-throughput sequencing technology was used to determine the ITS1 region of fungal amplicons, so as to analyze the diversity of fungal communities in the rhizosphere soil of six plants in the tundra of Changbai Mountain, and to analyze the correlation between the environment and the diversity and richness of fungal communities in combination with relevant soil physical and chemical factors. The diversity and richness of fungal community in the rhizosphere soil of six plants in Changbai Mountain tundra were different. The Simpson and Shannon indexes of Saxifraga stolonifera Curt were the highest, and the richness of fungal community in Dryas octopetala was the highest. The analysis of fungal community composition showed that the fungal colonies in plant rhizosphere soil samples mainly belonged to Ascomycota and Basidiomycota, which were the main dominant phyla. Mortierella, Fusarium and Sordariomycetes are common fungal genera in the rhizosphere soil of six plants, but their abundances are different among different plants. Water content was negatively correlated with fungal diversity, and TP was positively correlated with fungal community diversity. There were some differences in the composition and diversity of rhizosphere soil fungal communities of six plants in Changbai Mountain tundra. Ascomycota and Basidiomycota were the main soil fungal phyla in the rhizosphere of six plants in Changbai Mountain tundra. The results could provide theoretical guidance for ecological protection of Changbai Mountain tundra.