Rho-associated protein kinase is an essential regulator of cytoskeletal dynamics during the process of neurite extension. However, whether Rho kinase regulates microtubule remodeling or the distri- bution of adhesive ...Rho-associated protein kinase is an essential regulator of cytoskeletal dynamics during the process of neurite extension. However, whether Rho kinase regulates microtubule remodeling or the distri- bution of adhesive proteins to mediate neurite outgrowth remains unclear. By specifically modulat- ing Rho kinase activity with pharmacological agents, we studied the morpho-dynamics of neurite outgrowth. We found that lysophosphatidic acid, an activator of Rho kinase, inhibited neurite out- growth, which could be reversed by Y-27632, an inhibitor of Rho kinase. Meanwhile, reorganization of microtubules was noticed during these processes, as indicated by their significant changes in the soma and growth cone. In addition, exposure to lysophosphatidic acid led to a decreased mem- brane distribution of vinculin, a focal adhesion protein in neurons, whereas Y-27632 recruited vin- culin to the membrane. Taken together, our data suggest that Rho kinase regulates rat hippocampal neurite growth and microtubule formation via a mechanism associated with the redistribution of vinculin.展开更多
AIM: To investigate the roles and interactions of rhoassociatedprotein kinase (ROCK)1 and miR-124 inhuman colorectal cancer (CRC).METHODS: Expression of ROCK1 protein wasexamined by Western blotting, and quantitativer...AIM: To investigate the roles and interactions of rhoassociatedprotein kinase (ROCK)1 and miR-124 inhuman colorectal cancer (CRC).METHODS: Expression of ROCK1 protein wasexamined by Western blotting, and quantitativereverse transcriptase PCR was performed to measureexpression of ROCK1 mRNA and miR-124. Two cancercell lines were transfected with pre-miR-124 (mimic)and anti-miR-124 (inhibitor) and the effects onROCK1 protein and mRNA expression were observed.In addition, cell proliferation was assessed via a5-ethynyl-2′ deoxyuridine assay. Soft agar formationassay, and cell migration and invasion assays wereused to determine the effect of survivin on thetransformation and invasion activity of CRC cells.RESULTS: miR-124 was significantly downregulated inCRC compared to normal specimens (0.603 ± 0.092 vs1.147 ± 0.286, P = 0.016) and in metastatic comparedto nonmetastatic CRC specimens (0.416 ± 0.047 vs0.696 ± 0.089, P = 0.020). Expression of miR-124 wassignificantly associated with CRC metastasis, tumor Tand N stages, and tumor grade (all P < 0.05). ROCK1protein was significantly increased in CRC comparedto normal tissues (1.896 ± 0.258 vs 0.866 ± 0.136,P = 0.026), whereas ROCK1 mRNA expression wasunaltered (2.613 ± 0.251 vs 2.325 ± 0.246). miR-124and ROCK1 were inversely expressed in CRC tissuesand cell lines. ROCK1 mRNA was unaltered in cellstransfected with miR-124 mimic and miR-124 inhibitor,compared to normal controls. There was a significantreduction in ROCK1 protein in cells transfected withmiR-124 mimic and a significant increase in cells transfected with miR-124 inhibitor (P s < 0.05).Transformation and invasion of cells transfectedwith miR-124 inhibitor were significantly increasedcompared to those in normal controls (P < 0.05). Cellstransfected with miR-124 inhibitor showed increasedcell proliferation.CONCLUSION: miR-124 promotes hyperplasia andcontributes to invasion of CRC cells, but downregulatesROCK1. ROCK1 and miR-124 may play important rolesin CRC.展开更多
AIM:To investigate the role of Rho-associated protein kinase (ROCK) inhibitor, Y27632, in mediating the production of extracellular matrix (ECM) components including fibronectin, matrix metallo-proteinase-2 (MMP-2) an...AIM:To investigate the role of Rho-associated protein kinase (ROCK) inhibitor, Y27632, in mediating the production of extracellular matrix (ECM) components including fibronectin, matrix metallo-proteinase-2 (MMP-2) and type I collagen as induced by connective tissue growth factor(CTGF) or transforming growth factor-β (TGF-β) in a human retinal pigment epithelial cell line, ARPE-19. METHODS:The effect of Y27632 on the CTGF or TGF-β induced phenotype in ARPE-19 cells was measured with immunocytochemistry as the change in F-actin. ARPE-19 cells were treated with CTGF (1, 10, 100ng/mL)and TGF-β (10ng/mL) in serum free media, and analyzed for fibronectin, laminin, and MMP-2 and type I collagen by RT-qPCR and immunocytochemistry. Cells were also pretreated with an ROCK inhibitor, Y27632, to analyze the signaling contributing to ECM production. ·RESULTS:Treatment of ARPE-19 cells in culture with TGF-β or CTGF induced an ECM change from a cobblestone morphology to a more elongated swirl pattern indicating a mesenchymal phenotype. RT-qPCR analysis and different gene expression analysis demonstrated an upregulation in expression of genes associated with cytoskeletal structure and motility. CTGFor TGF-β significantly increased expression of fibronectin mRNA (P =0.006, P =0.003 respectively), laminin mRNA (P =0.006, P =0.005), MMP-2 mRNA (P =0.006, P =0.001), COL1A1 mRNA (P =0.001, P =0.001), COL1A2 mRNA (P = 0.001, P =0.001). Preincubation of ARPE-19 with Y27632 (10mmol/L) significantly prevented CTGF or TGF-β induced fibronectin (P=0.005, P=0.003 respectively), MMP-2 (P = 0.003, P =0.002), COL1A1 (P =0.006, P =0.003), and COL1A2 (P =0.006, P =0.004) gene expression, but not laminin (P =0.375, P =0.516). CONCLUSION:Our study demonstrated that both TGF-β and CTGF upregulate the expression of ECM components including fibronectin, laminin, MMP-2 and type I collagen by activating the RhoA/ROCK signaling pathway. During this process, ARPE-19 cells were shown to change from an epithelial to a mesenchymal phenotype in vitro. Y27632, a ROCK inhibitor, inhibited the transcription of fibronectin, MMP-2 and type I collagen, but not laminin. The data from our work suggest a role for CTGF as a profibrotic mediator. Inhibiting the RhoA/ROCK pathway represents a potential target to prevent the fibrosis of retinal pigment epithelial (RPE) cells. This might lead to a novel therapeutic approach to preventing the onset of early proliferative vitreoretinopathy(PVR).展开更多
Rho kinase inhibitor fasudil hydrochloride has been shown to reduce cerebral vasospasm, to inhibit inflammation and apoptosis and to promote the recovery of neurological function. However, the effect of fasudil hydroc...Rho kinase inhibitor fasudil hydrochloride has been shown to reduce cerebral vasospasm, to inhibit inflammation and apoptosis and to promote the recovery of neurological function. However, the effect of fasudil hydrochloride on claudin-5 protein expression has not been reported after cerebral ischemia/reperfusion. Therefore, this study sought to explore the effects of fasudil hydrochloride on blood-brain barrier permeability, growth-associated protein-43 and claudin-5 protein expression, and to further understand the neuroprotective effect of fasudil hydrochloride. A focal cerebral ischemia/reperfusion model was established using the intraluminal suture technique. Fasudil hydrochloride (15 mg/kg) was intraperitoneally injected once a day. Neurological deficit was evaluated using Longa's method. Changes in permeability of blood-brain barrier were measured using Evans blue. Changes in RhoA, growth-associated protein-43 and claudin-5 protein expression were detected using immunohistochemistry and western blotting. Results revealed that fasudil hydrochloride noticeably contributed to the recovery of neurological function, improved the function of blood-brain barrier, inhibited RhoA protein expression, and upregulated growth-associated protein-43 and claudin-5 protein expression following cerebral ischemia/reperfusion. Results indicated that Rho kinase exhibits a certain effect on neurovascular damage following cerebral ischemia/reperfusion. Intervention targeted Rho kinase might be a new therapeutic target in the treatment of cerebral ischemia/reperfusion.展开更多
Background:Microribose nucleic acids(miRNAs)are implicated in the progression of lung adenocarcinoma.MicroRNA-345-5p(miR-345-5p)is a recently identified anti-oncogene in some human cancers,but its functional role and ...Background:Microribose nucleic acids(miRNAs)are implicated in the progression of lung adenocarcinoma.MicroRNA-345-5p(miR-345-5p)is a recently identified anti-oncogene in some human cancers,but its functional role and possible molecular mechanism in lung adenocarcinoma remain unknown.This study aimed to identify the biological function and underlying mechanism of miR-345-5p in lung adenocarcinoma cells.Methods:In this study,lung adenocarcinoma tissues and adjacent tissues were collected in the First Affiliated Hospital of Anhui Medical University between April 2016 and February 2017.The expression of miR-345-5p and ras homolog family member A(RhoA)in lung adenocarcinoma tissues and human lung adenocarcinoma cell lines(A549,H1650,PC-9,and H441)was detected by reverse transcription quantitative polymerase chain reaction analysis.Functional assays including colony formation,flow cytometry analysis,wound healing,and transwell assays were performed to assess the proliferation,apoptosis,migration,and invasion of lung adenocarcinoma cells.In addition,RNA pulldown and luciferase reporter assays were conducted to evaluate the relationship between miR-345-5p and RhoA.Difference between the two groups was analyzed with Student’st test,while that among multiple groups was analyzed with one-way analysis of variance.Results:MiR-345-5p expression displayed lower level in lung adenocarcinoma tissues(0.241±0.095vs.1.000±0.233,t=19.247,P<0.001)and cell lines(F=56.992,P<0.001)than control tissues and cells.Functional experiments demonstrated that upregulation of miR-345-5p inhibited the malignant phenotypes of lung adenocarcinoma cells via suppressing cell proliferation,migration,invasion,and facilitating cell apoptosis.Additionally,RhoA was verified to be the downstream target of miR-345-5p.Expression of RhoA was downregulated by overexpression of miR-345-5p in PC-9(0.321±0.047vs.1.000±0.127,t=8.536,P<0.001)and H1650(0.398±0.054vs.1.000±0.156,t=4.429,P=0.011)cells.Rescue assays revealed that overexpression of RhoA rescued the suppressive effects of miR-345-5p upregulation on proliferation,migration,and invasion of lung adenocarcinoma cells.Further,miR-345-5p was found to regulate the Rho/Rho-associated protein kinase(ROCK)signaling pathway by downregulation of RhoA in lung adenocarcinoma cells.Conclusions:MiR-345-5p plays a tumor suppressor role in lung adenocarcinoma cells by downregulating RhoA to inactivate the Rho/ROCK pathway.展开更多
基金supported by the National Natural Science Foundation of China,No.31170941the Fundamental Research Funds for the Central Universities,No.21612424the Science and Technology Planning Project of Guangdong Province,No.2010B031600102
文摘Rho-associated protein kinase is an essential regulator of cytoskeletal dynamics during the process of neurite extension. However, whether Rho kinase regulates microtubule remodeling or the distri- bution of adhesive proteins to mediate neurite outgrowth remains unclear. By specifically modulat- ing Rho kinase activity with pharmacological agents, we studied the morpho-dynamics of neurite outgrowth. We found that lysophosphatidic acid, an activator of Rho kinase, inhibited neurite out- growth, which could be reversed by Y-27632, an inhibitor of Rho kinase. Meanwhile, reorganization of microtubules was noticed during these processes, as indicated by their significant changes in the soma and growth cone. In addition, exposure to lysophosphatidic acid led to a decreased mem- brane distribution of vinculin, a focal adhesion protein in neurons, whereas Y-27632 recruited vin- culin to the membrane. Taken together, our data suggest that Rho kinase regulates rat hippocampal neurite growth and microtubule formation via a mechanism associated with the redistribution of vinculin.
文摘AIM: To investigate the roles and interactions of rhoassociatedprotein kinase (ROCK)1 and miR-124 inhuman colorectal cancer (CRC).METHODS: Expression of ROCK1 protein wasexamined by Western blotting, and quantitativereverse transcriptase PCR was performed to measureexpression of ROCK1 mRNA and miR-124. Two cancercell lines were transfected with pre-miR-124 (mimic)and anti-miR-124 (inhibitor) and the effects onROCK1 protein and mRNA expression were observed.In addition, cell proliferation was assessed via a5-ethynyl-2′ deoxyuridine assay. Soft agar formationassay, and cell migration and invasion assays wereused to determine the effect of survivin on thetransformation and invasion activity of CRC cells.RESULTS: miR-124 was significantly downregulated inCRC compared to normal specimens (0.603 ± 0.092 vs1.147 ± 0.286, P = 0.016) and in metastatic comparedto nonmetastatic CRC specimens (0.416 ± 0.047 vs0.696 ± 0.089, P = 0.020). Expression of miR-124 wassignificantly associated with CRC metastasis, tumor Tand N stages, and tumor grade (all P < 0.05). ROCK1protein was significantly increased in CRC comparedto normal tissues (1.896 ± 0.258 vs 0.866 ± 0.136,P = 0.026), whereas ROCK1 mRNA expression wasunaltered (2.613 ± 0.251 vs 2.325 ± 0.246). miR-124and ROCK1 were inversely expressed in CRC tissuesand cell lines. ROCK1 mRNA was unaltered in cellstransfected with miR-124 mimic and miR-124 inhibitor,compared to normal controls. There was a significantreduction in ROCK1 protein in cells transfected withmiR-124 mimic and a significant increase in cells transfected with miR-124 inhibitor (P s < 0.05).Transformation and invasion of cells transfectedwith miR-124 inhibitor were significantly increasedcompared to those in normal controls (P < 0.05). Cellstransfected with miR-124 inhibitor showed increasedcell proliferation.CONCLUSION: miR-124 promotes hyperplasia andcontributes to invasion of CRC cells, but downregulatesROCK1. ROCK1 and miR-124 may play important rolesin CRC.
文摘AIM:To investigate the role of Rho-associated protein kinase (ROCK) inhibitor, Y27632, in mediating the production of extracellular matrix (ECM) components including fibronectin, matrix metallo-proteinase-2 (MMP-2) and type I collagen as induced by connective tissue growth factor(CTGF) or transforming growth factor-β (TGF-β) in a human retinal pigment epithelial cell line, ARPE-19. METHODS:The effect of Y27632 on the CTGF or TGF-β induced phenotype in ARPE-19 cells was measured with immunocytochemistry as the change in F-actin. ARPE-19 cells were treated with CTGF (1, 10, 100ng/mL)and TGF-β (10ng/mL) in serum free media, and analyzed for fibronectin, laminin, and MMP-2 and type I collagen by RT-qPCR and immunocytochemistry. Cells were also pretreated with an ROCK inhibitor, Y27632, to analyze the signaling contributing to ECM production. ·RESULTS:Treatment of ARPE-19 cells in culture with TGF-β or CTGF induced an ECM change from a cobblestone morphology to a more elongated swirl pattern indicating a mesenchymal phenotype. RT-qPCR analysis and different gene expression analysis demonstrated an upregulation in expression of genes associated with cytoskeletal structure and motility. CTGFor TGF-β significantly increased expression of fibronectin mRNA (P =0.006, P =0.003 respectively), laminin mRNA (P =0.006, P =0.005), MMP-2 mRNA (P =0.006, P =0.001), COL1A1 mRNA (P =0.001, P =0.001), COL1A2 mRNA (P = 0.001, P =0.001). Preincubation of ARPE-19 with Y27632 (10mmol/L) significantly prevented CTGF or TGF-β induced fibronectin (P=0.005, P=0.003 respectively), MMP-2 (P = 0.003, P =0.002), COL1A1 (P =0.006, P =0.003), and COL1A2 (P =0.006, P =0.004) gene expression, but not laminin (P =0.375, P =0.516). CONCLUSION:Our study demonstrated that both TGF-β and CTGF upregulate the expression of ECM components including fibronectin, laminin, MMP-2 and type I collagen by activating the RhoA/ROCK signaling pathway. During this process, ARPE-19 cells were shown to change from an epithelial to a mesenchymal phenotype in vitro. Y27632, a ROCK inhibitor, inhibited the transcription of fibronectin, MMP-2 and type I collagen, but not laminin. The data from our work suggest a role for CTGF as a profibrotic mediator. Inhibiting the RhoA/ROCK pathway represents a potential target to prevent the fibrosis of retinal pigment epithelial (RPE) cells. This might lead to a novel therapeutic approach to preventing the onset of early proliferative vitreoretinopathy(PVR).
基金funded by the National Natural Science Foundation of China,No.30870855the Natural Science Foundation of Beijing,No.7082028Beijing Municipal Health System High-Level Technician Cultivation Project,No.2009-3-07
文摘Rho kinase inhibitor fasudil hydrochloride has been shown to reduce cerebral vasospasm, to inhibit inflammation and apoptosis and to promote the recovery of neurological function. However, the effect of fasudil hydrochloride on claudin-5 protein expression has not been reported after cerebral ischemia/reperfusion. Therefore, this study sought to explore the effects of fasudil hydrochloride on blood-brain barrier permeability, growth-associated protein-43 and claudin-5 protein expression, and to further understand the neuroprotective effect of fasudil hydrochloride. A focal cerebral ischemia/reperfusion model was established using the intraluminal suture technique. Fasudil hydrochloride (15 mg/kg) was intraperitoneally injected once a day. Neurological deficit was evaluated using Longa's method. Changes in permeability of blood-brain barrier were measured using Evans blue. Changes in RhoA, growth-associated protein-43 and claudin-5 protein expression were detected using immunohistochemistry and western blotting. Results revealed that fasudil hydrochloride noticeably contributed to the recovery of neurological function, improved the function of blood-brain barrier, inhibited RhoA protein expression, and upregulated growth-associated protein-43 and claudin-5 protein expression following cerebral ischemia/reperfusion. Results indicated that Rho kinase exhibits a certain effect on neurovascular damage following cerebral ischemia/reperfusion. Intervention targeted Rho kinase might be a new therapeutic target in the treatment of cerebral ischemia/reperfusion.
文摘Background:Microribose nucleic acids(miRNAs)are implicated in the progression of lung adenocarcinoma.MicroRNA-345-5p(miR-345-5p)is a recently identified anti-oncogene in some human cancers,but its functional role and possible molecular mechanism in lung adenocarcinoma remain unknown.This study aimed to identify the biological function and underlying mechanism of miR-345-5p in lung adenocarcinoma cells.Methods:In this study,lung adenocarcinoma tissues and adjacent tissues were collected in the First Affiliated Hospital of Anhui Medical University between April 2016 and February 2017.The expression of miR-345-5p and ras homolog family member A(RhoA)in lung adenocarcinoma tissues and human lung adenocarcinoma cell lines(A549,H1650,PC-9,and H441)was detected by reverse transcription quantitative polymerase chain reaction analysis.Functional assays including colony formation,flow cytometry analysis,wound healing,and transwell assays were performed to assess the proliferation,apoptosis,migration,and invasion of lung adenocarcinoma cells.In addition,RNA pulldown and luciferase reporter assays were conducted to evaluate the relationship between miR-345-5p and RhoA.Difference between the two groups was analyzed with Student’st test,while that among multiple groups was analyzed with one-way analysis of variance.Results:MiR-345-5p expression displayed lower level in lung adenocarcinoma tissues(0.241±0.095vs.1.000±0.233,t=19.247,P<0.001)and cell lines(F=56.992,P<0.001)than control tissues and cells.Functional experiments demonstrated that upregulation of miR-345-5p inhibited the malignant phenotypes of lung adenocarcinoma cells via suppressing cell proliferation,migration,invasion,and facilitating cell apoptosis.Additionally,RhoA was verified to be the downstream target of miR-345-5p.Expression of RhoA was downregulated by overexpression of miR-345-5p in PC-9(0.321±0.047vs.1.000±0.127,t=8.536,P<0.001)and H1650(0.398±0.054vs.1.000±0.156,t=4.429,P=0.011)cells.Rescue assays revealed that overexpression of RhoA rescued the suppressive effects of miR-345-5p upregulation on proliferation,migration,and invasion of lung adenocarcinoma cells.Further,miR-345-5p was found to regulate the Rho/Rho-associated protein kinase(ROCK)signaling pathway by downregulation of RhoA in lung adenocarcinoma cells.Conclusions:MiR-345-5p plays a tumor suppressor role in lung adenocarcinoma cells by downregulating RhoA to inactivate the Rho/ROCK pathway.