Bacillus thuringiensis/cereus L2 was added as a biostimulant to enhance the biomass accumulation and carotenoid yield of Rhodobacter sphaeroides using wastewater as the culturing medium. Results showed that biostimula...Bacillus thuringiensis/cereus L2 was added as a biostimulant to enhance the biomass accumulation and carotenoid yield of Rhodobacter sphaeroides using wastewater as the culturing medium. Results showed that biostimulation could significantly enhance the R. sphaeroides biomass production and carotenoid yield. The optimal biostimulant proportion was 40 μL(about 6.4 × 10^5CFU). Through the use of biostimulation, chemical oxygen demand removal, R. sphaeroides biomass production, carotenoid concentration, and carotenoid yield were improved by 178%, 67%, 214%, and 70%, respectively. Theoretical analysis revealed that there were two possible reasons for such increases. One was that biostimulation enhanced the R. sphaeroides wastewater treatment efficiency. The other was that biostimulation significantly decreased the peroxidase activity in R. sphaeroides. The results showed that the highest peroxidase activity dropped by 87% and the induction ratio of the RSP_3419 gene was 3.1 with the addition of biostimulant. The enhanced carotenoid yield in R. sphaeroides could thus be explained by a decrease in peroxidase activity.展开更多
基金supported by the National Natural Science Foundation of China (No. 51278489)
文摘Bacillus thuringiensis/cereus L2 was added as a biostimulant to enhance the biomass accumulation and carotenoid yield of Rhodobacter sphaeroides using wastewater as the culturing medium. Results showed that biostimulation could significantly enhance the R. sphaeroides biomass production and carotenoid yield. The optimal biostimulant proportion was 40 μL(about 6.4 × 10^5CFU). Through the use of biostimulation, chemical oxygen demand removal, R. sphaeroides biomass production, carotenoid concentration, and carotenoid yield were improved by 178%, 67%, 214%, and 70%, respectively. Theoretical analysis revealed that there were two possible reasons for such increases. One was that biostimulation enhanced the R. sphaeroides wastewater treatment efficiency. The other was that biostimulation significantly decreased the peroxidase activity in R. sphaeroides. The results showed that the highest peroxidase activity dropped by 87% and the induction ratio of the RSP_3419 gene was 3.1 with the addition of biostimulant. The enhanced carotenoid yield in R. sphaeroides could thus be explained by a decrease in peroxidase activity.