Rhodopseudomonas palustris, one of purple nonsulfur photosynthetic bacteria, fixes carbon dioxide via Calvin-Benson cycle and has been shown previously to express form I and form II ribulose-1,5-bisphosphate carboxyla...Rhodopseudomonas palustris, one of purple nonsulfur photosynthetic bacteria, fixes carbon dioxide via Calvin-Benson cycle and has been shown previously to express form I and form II ribulose-1,5-bisphosphate carboxylase/oxygenase (RubisCO). The gene cbbM, which encodes the form II enzyme from Rhodopseudomonas palustris, has been subcloned and sequenced. The deduced amino acid sequence is highly with the form II RubisCO from photosynthetic bacteria, including Rhodospirillum rubrum (PDB ID: 9rub), but appears to be more distantly related to the large subunit of the form I RubisCO found in photosynthetic bacteria, chemoautotrophic bacteria and higher plants. Several regions highly conserved among L 8S 8 and L x enzymes correspond with regions previously implicated in catalytic activity and subunit interactions.展开更多
Engineered photosynthetic bacterium Rhodo-pseudomonas palustris is excellent at one-step CO_(2) biomethanation and can use near-infrared light sources,overcoming the limitations of conventional photosynthetic systems....Engineered photosynthetic bacterium Rhodo-pseudomonas palustris is excellent at one-step CO_(2) biomethanation and can use near-infrared light sources,overcoming the limitations of conventional photosynthetic systems.The current study constructed a biohybrid system that deposited CdS nanoparticles on R.palustris.This biohybrid system broadens the capture of sustainable solar energy,achieving a 155 nmol-mL-biological CH,production under full visible light irradiation,13.4-fold of that by the pure R.palustris.The transcriptome profiles revealed that gene expression related to photosynthetic electron transfer chain,nitrogenase,nanofilaments,and redox stress defense was activated.Accordingly,we attributed the much-enhanced CO_(2) biomethanation in the biohybrid system to the remarkable increase in the intracellular reducing power and the stronger rigidity of the cells assisted by photoexcited electrons from CdS nanoparticles.Our discovery offers insight and a promising strategy forimproving the current CO_(2)-CH_(4) biomanufacturing system.展开更多
Plant virus causes massive crop losses globally.However,there is currently no effective measure to control plant viral disease.Previously,we identify an antiviral protein Rhp-PSP,produced by the bacterial Rhodopseudom...Plant virus causes massive crop losses globally.However,there is currently no effective measure to control plant viral disease.Previously,we identify an antiviral protein Rhp-PSP,produced by the bacterial Rhodopseudomonas palustris strain JSC-3b.In this study,we discover that the antiviral activity of Rhp-PSP relies on its endoribonuclease activity.Converting the arginine(R)residue at position 129 onto alanine(A)abolishs its endoribonuclease activity on coat protein(CP)RNA of tobacco mosaic virus(TMV),consequentially,compromises the antiviral activity of Rhp-PSP.Further investigation demonstrates that,the mutant Rhp-PSP^(R129A)is unable to form the homotrimer as the wild type,indicating the importance of quaternary junction for the endoribonuclease activity.Overexpression of Rhp-PSP in Nicotiana benthamiana significantly enhances the resistance against TMV of seedlings,while expression of Rhp-PSP^(R129A)did not,confirming that endoribonuclease activity is responsible for the antiviral activity of Rhp-PSP.In addition,foliar spray of Rhp-PSP solution on tomato and pepper plants significantly reduces the disease index of viral diseases,indicating that Rhp-PSP shows potential to develop antiviral agent in practice.展开更多
文摘Rhodopseudomonas palustris, one of purple nonsulfur photosynthetic bacteria, fixes carbon dioxide via Calvin-Benson cycle and has been shown previously to express form I and form II ribulose-1,5-bisphosphate carboxylase/oxygenase (RubisCO). The gene cbbM, which encodes the form II enzyme from Rhodopseudomonas palustris, has been subcloned and sequenced. The deduced amino acid sequence is highly with the form II RubisCO from photosynthetic bacteria, including Rhodospirillum rubrum (PDB ID: 9rub), but appears to be more distantly related to the large subunit of the form I RubisCO found in photosynthetic bacteria, chemoautotrophic bacteria and higher plants. Several regions highly conserved among L 8S 8 and L x enzymes correspond with regions previously implicated in catalytic activity and subunit interactions.
基金supported by the 2022 Carbon Dafeng and Carbon Neutral Science and Technology Innovation Special Fund in Jiangsu Province(Grant No.BK20220003)the National Natural Science Foundation of China(Grant No.32371538)+2 种基金the Special Funds for Jiangsu Provincial Science and technology plan(Grant No.BZ2022052)the Jiangsu Agriculture Science and Technology Innovation Fund(Grant No.CX(21)2015)the Jiangsu Synergetic Innovation Center for Advanced Bio-Manufacture(Grant No.XTD2204).
文摘Engineered photosynthetic bacterium Rhodo-pseudomonas palustris is excellent at one-step CO_(2) biomethanation and can use near-infrared light sources,overcoming the limitations of conventional photosynthetic systems.The current study constructed a biohybrid system that deposited CdS nanoparticles on R.palustris.This biohybrid system broadens the capture of sustainable solar energy,achieving a 155 nmol-mL-biological CH,production under full visible light irradiation,13.4-fold of that by the pure R.palustris.The transcriptome profiles revealed that gene expression related to photosynthetic electron transfer chain,nitrogenase,nanofilaments,and redox stress defense was activated.Accordingly,we attributed the much-enhanced CO_(2) biomethanation in the biohybrid system to the remarkable increase in the intracellular reducing power and the stronger rigidity of the cells assisted by photoexcited electrons from CdS nanoparticles.Our discovery offers insight and a promising strategy forimproving the current CO_(2)-CH_(4) biomanufacturing system.
基金supported by the National Key R&D Program of China(2022YFD1400700)the Key Research and Development Program of Hunan Province,China(2022NK2014)+2 种基金the Hunan Natural Science Foundation,China(2022JJ40234)the Agricultural Science and Technology Innovation Fund Project of Hunan Province,China(2022CX1)the Changsha Natural Science Foundation,China(kq2202338).
文摘Plant virus causes massive crop losses globally.However,there is currently no effective measure to control plant viral disease.Previously,we identify an antiviral protein Rhp-PSP,produced by the bacterial Rhodopseudomonas palustris strain JSC-3b.In this study,we discover that the antiviral activity of Rhp-PSP relies on its endoribonuclease activity.Converting the arginine(R)residue at position 129 onto alanine(A)abolishs its endoribonuclease activity on coat protein(CP)RNA of tobacco mosaic virus(TMV),consequentially,compromises the antiviral activity of Rhp-PSP.Further investigation demonstrates that,the mutant Rhp-PSP^(R129A)is unable to form the homotrimer as the wild type,indicating the importance of quaternary junction for the endoribonuclease activity.Overexpression of Rhp-PSP in Nicotiana benthamiana significantly enhances the resistance against TMV of seedlings,while expression of Rhp-PSP^(R129A)did not,confirming that endoribonuclease activity is responsible for the antiviral activity of Rhp-PSP.In addition,foliar spray of Rhp-PSP solution on tomato and pepper plants significantly reduces the disease index of viral diseases,indicating that Rhp-PSP shows potential to develop antiviral agent in practice.