BACKGROUND Jianpi Gushen Huayu Decoction(JPGS)has been used to clinically treat diabetic nephropathy(DN)for many years.However,the protective mechanism of JPGS in treating DN remains unclear.AIM To evaluate the therap...BACKGROUND Jianpi Gushen Huayu Decoction(JPGS)has been used to clinically treat diabetic nephropathy(DN)for many years.However,the protective mechanism of JPGS in treating DN remains unclear.AIM To evaluate the therapeutic effects and the possible mechanism of JPGS on DN.METHODS We first evaluated the therapeutic potential of JPGS on a DN mouse model.We then investigated the effect of JPGS on the renal metabolite levels of DN mice using non-targeted metabolomics.Furthermore,we examined the effects of JPGS on c-Jun N-terminal kinase(JNK)/P38-mediated apoptosis and the inflammatory responses mediated by toll-like receptor 4(TLR4)/nuclear factor-kappa B(NF-κB)/NOD-like receptor family pyrin domain containing 3(NLRP3).RESULTS The ameliorative effects of JPGS on DN mice included the alleviation of renal injury and the control of inflammation and oxidative stress.Untargeted metabolomic analysis revealed that JPGS altered the metabolites of the kidneys in DN mice.A total of 51 differential metabolites were screened.Pathway analysis results indicated that nine pathways significantly changed between the control and model groups,while six pathways significantly altered between the model and JPGS groups.Pathways related to cysteine and methionine metabolism;alanine,tryptophan metabolism;aspartate and glutamate metabolism;and riboflavin metabolism were identified as the key pathways through which JPGS affects DN.Further experimental validation showed that JPGS treatment reduced the expression of TLR4/NF-κB/NLRP3 pathways and JNK/P38 pathway-mediated apoptosis related factors.CONCLUSION JPGS could markedly treat mice with streptozotocin(STZ)-induced DN,which is possibly related to the regulation of several metabolic pathways found in kidneys.Furthermore,JPGS could improve kidney inflammatory responses and ameliorate kidney injuries in DN mice via the TLR4/NF-κB/NLRP3 pathway and inhibit JNK/P38 pathwaymediated apoptosis in DN mice.展开更多
Background:The development and prognosis of breast cancer are intricately linked to psychological stress.In addition,depression is the most common psychological comorbidity among breast cancer survivors,and reportedly...Background:The development and prognosis of breast cancer are intricately linked to psychological stress.In addition,depression is the most common psychological comorbidity among breast cancer survivors,and reportedly,Fang-Xia-Dihuang decoction(FXDH)can effectively manage depression in such patients.However,its pharmacological and molecular mechanisms remain obscure.Methods:Public databases were used for obtaining active components and related targets.Main active components were further verified by ultra-high-performance liquid chromatography-high-resolution mass spectrometry(UPLC-HRMS).Protein–protein interaction and enrichment analyses were taken to predict potential hub targets and related pathways.Molecule docking was used to understand the interactions between main compounds and hub targets.In addition,an animal model of breast cancer combined with depression was established to evaluate the intervention effect of FXDH and verify the pathways screened by network pharmacology.Results:174 active components of FXDH and 163 intersection targets of FXDH,breast cancer,and depression were identified.Quercetin,methyl ferulate,luteolin,ferulaldehyde,wogonin,and diincarvilone were identified as the principal active components of FXDH.Protein–protein interaction and KEGG enrichment analyses revealed that the phosphoinositide-3-kinase–protein kinase B(PI3K/AKT)and Janus kinase/signal transducer and activator of transcription(JAK2/STAT3)signaling pathways played a crucial role in mediating the efficacy of FXDH for inhibiting breast cancer progression induced by depression.In addition,in vivo experiments revealed that FXDH ameliorated depression-like behavior in mice and inhibited excessive tumor growth in mice with breast cancer and depression.FXDH treatment downregulated the expression of epinephrine,PI3K,AKT,STAT3,and JAK2 compared with the control treatment(p<0.05).Molecular docking verified the relationship between the six primary components of FXDH and the three most important targets,including phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit alpha(PIK3CA),AKT,and STAT3.Conclusion:This study provides a scientific basis to support the clinical application of FXDH for improving depression-like behavior and inhibiting breast cancer progression promoted by chronic stress.The therapeutic effects FXDH may be closely related to the PI3K/AKT and JAK2/STAT3 pathways.This finding helps better understand the regulatory mechanisms underlying the efficacy of FXDH.展开更多
BACKGROUND In China banxia xiexin decoction(BXD)has been used in treating gastric cancer(GC)for thousands of years and BXD has a good role in reversing GC histopathology,but its chemical composition and action mechani...BACKGROUND In China banxia xiexin decoction(BXD)has been used in treating gastric cancer(GC)for thousands of years and BXD has a good role in reversing GC histopathology,but its chemical composition and action mechanism are still unknown.AIM To investigate the mechanism of action of BXD against GC based on transcriptomics,network pharmacology,in vivo and in vitro experiments.METHODS The transplanted tumor model was prepared,and the nude mouse were pathologically examined after administration,and hematoxylin-eosin staining was performed.The active ingredients of BXD were quality controlled and identified using ultra-performance liquid chromatography tandem quadrupole electrostatic field orbitrap mass spectrometry(UPLC-Q-Orbitrap MS/MS),and traditional Chinese medicines systems pharmacology platform,drug bank and the Swiss target prediction platform to predict the relevant targets,the differentially expressed genes(DEGs)of GC were screened by RNA-seq sequencing,and the overlapping targets were analyzed to obtain the key targets and pathways.Cell Counting Kit-8,apoptosis assay,cell migration and Realtime fluorescence quantitative polymerase chain reaction were used for in vitro experiments.RESULTS All dosing groups inhibited the growth of transplanted tumors in laboratory-bred strain nude,with the capecitabine group and the BXD medium-dose group being the best.A total of 29 compounds and 859 potential targets in BXD were identified by UPLC-Q-Orbitrap MS/MS and network pharmacology,RNA-seq sequencing found 4767 GC DEGs,which were combined with network pharmacology and analyzed 246 potential therapeutic targets were obtained and pathway results showed that BXD may against GC through the Phosphoinositide 3-kinase(PI3K)/protein kinase B(AKt)signaling pathway.In vitro cellular experiments confirmed that BXDcontaining serum and LY294002 could inhibit the proliferation of GC cells,promote apoptosis,and inhibit the migration of GC cells by decreasing the expression of EGFR,PIK3CA,IL6,BCL2 and AKT1 in the PI3K-Akt pathway in MGC-803 expression.CONCLUSION BXD has the effect of inhibiting tumor growth rate and delaying the development of GC.Its mechanism of action may be related to the regulation of PI3K-Akt signaling pathway.展开更多
Objective:To observe the effect of Qishen decoction on TGR5-mediated activation of NLRP3 inflammasome,so as to clarify the molecular mechanism of its inhibition of macrophage M1-type polarisation to ameliorate non-alc...Objective:To observe the effect of Qishen decoction on TGR5-mediated activation of NLRP3 inflammasome,so as to clarify the molecular mechanism of its inhibition of macrophage M1-type polarisation to ameliorate non-alcoholic steatohepatitis;Methods:Mouse macrophage cell line RAW264.7 was randomly divided into a control group,model group,Qishen decoction group,TGR5 agonist group and Qishen decoction+TGR5 agonist group.Except for the control group,the remaining groups were constructed the macrophage NLRP3 activation model by palmitic acid induction,and the corresponding drugs were given to intervene.ELISA was used to detect the levels of TNF-α,IL-6,IL-1βand CXCL2 in macrophage supernatants,flow cytometry was used to detect the expression levels of macrophage polarisation marker molecules CD86 and iNOS,and Western blot was used to detect the expression of the TGR5/STAT1/STAT6 signaling pathway and the expression of NLRP3 inflammasome-associated proteins,respectively.Results:Compared with the control group,the contents of macrophages TNF-α,IL-6,IL-1β,CXCL2 and the proportion of macrophages with positive expression of CD86 and iNOS were significantly increased in the model group,and the differences were all statistically significant(P<0.01).Compared with the model group,the contents of TNF-α,IL-6,IL-1β,CXCL2 and the proportion of macrophages with positive expression of CD86 and iNOS were significantly decreased in the Qishen decoction group,and the differences were all statistically significant(P<0.01).In addition,the expression of NLRP3 and Pro-IL-1βproteins in the macrophage lysate and the expression of Caspase-1 p10,Caspase-1 p20 and IL-1βp17 proteins in the cell supernatant of the model group were significantly increased when compared with the control group,and the differences were all statistically significant(P<0.01).Compared with the model group,the expression of NLRP3 and Pro-IL-1βproteins in macrophage lysate and the expression of Caspase-1 p10,Caspase-1 p20 and IL-1βp17 proteins in cell supernatant of the Qishen decoction were significantly reduced,and the differences were all statistically significant(P<0.01);Conclusion:Qishen decoction can inhibit the activation of NLRP3 inflammasome in macrophages by inhibiting the TGR5/STAT1/STAT6 signaling pathway,thereby inhibiting macrophage M1 polarization and improving inflammatory response.展开更多
Objective:To observe the effect of Sanshi decoction on BRD4/NF-κB/NLRP3 pathwaymediated macrophage pyroptosis,so as to elucidate the molecular mechanism of Sanshi decoction in the treatment of gouty arthritis.Methods...Objective:To observe the effect of Sanshi decoction on BRD4/NF-κB/NLRP3 pathwaymediated macrophage pyroptosis,so as to elucidate the molecular mechanism of Sanshi decoction in the treatment of gouty arthritis.Methods:THP-1 was induced into macrophages with foboside and the divided into the control group,model group,low-dose,medium-dose,high-dose group of Sanshi decoction,and BRD4 inhibitor group.Except for the control group,the remaining groups were induced with monosodium urate crystals to construct a gouty arthritis cell model.The activity of macrophages was detected by CCK8,the level of macrophage pyroptosis was detected by flow cytometry,the activity of LDH,the content of IL-1β and IL-18 were detected by enzyme-linked immunosorbent assay,and the expression of related proteins in the BRD4/NF-κB/NLRP3 pathway was detected by Western blot.Results:Compared with the control group,macrophage activity was decreased in the model group,and the level of pyroptosis,LDH activity,contents of IL-1β and IL-18,expression levels of BRD4,p-NF-kB p65,NLRP3,Caspase-1 p20,and IL-1β protein were significantly up-regulated,the differences were statistically significant(P<0.05 and P<0.01).Compared with the model group,macrophage activity was up-regulated in the Sanshi Decoction,and the level of pyroptosis,LDH activity,IL-1β and IL-18 contents,expression levels of BRD4,p-NF-kB p65,NLRP3,Caspase-1 p20,and IL-1β protein were significantly decreased with statistically significant differences(P<0.05 and P<0.01).Conclusion:Sanshi decoction inhibits macrophage pyroptosis by inhibiting BRD4/NF-κB/NLRP3 pathway activation,thus improving the inflammation level of gouty arthritis.展开更多
Objective:To observe the effect of Sanshi decoction on P2X7R/PKR pathway-mediated activation of macrophage NLRP3 inflammasome to elucidate the molecular mechanism of Sanshi decoction in the treatment of gouty arthriti...Objective:To observe the effect of Sanshi decoction on P2X7R/PKR pathway-mediated activation of macrophage NLRP3 inflammasome to elucidate the molecular mechanism of Sanshi decoction in the treatment of gouty arthritis.Methods:THP-1 macrophages were divided into control group,model group,low dose group,medium dose group,high dose group of Sanshi decoction and inhibitor group.The remaining groups were induced with monosodium urate crystals to establish a gouty arthritis cell model except the control group.Flow cytometry was used to detect macrophage ROS levels in each group,ELISA to detect MDA levels and SOD and GSH-PX activities in each group,and Western blot to detect P2X7R/PKR pathway and NLRP3 inflammasome-associated protein expression.We also used CCK-8 and flow cytometry to measure MH7A activity and apoptotic levels.Results:Compared with the control group,the ROS level,the content of MDA,the activities of SOD and GSH-PX were significantly increased,and the expression levels of NLRP3,full-length IL-1β,pro-IL-1β,full-length IL-18,pro-IL-18,full-length caspase-1,GSDMD-NT,P2X7R and p-PKR protein expression levels were significantly upregulated,and GSDMD-FL protein expression was significantly downregulated in the model group,and that the differences between them were statistically significant(P<0.05 and P<0.01).Compared with the model group,Sanshi decoction could reduce macrophage ROS levels,MDA content,SOD and GSHPX activities,and downregulate macrophage NLRP3,mature IL-1β,pro IL-1β,mature IL-18,pro IL-18,mature caspase-1,GSDMD-NT,P2X7R and p-PKR protein expression,and upregulate GSDMD-FL protein expression,with statistically significant differences(P<0.05 and P<0.01).In addition,MH7A activity was downregulated,and apoptosis level was upregulated in the model group in comparison with the control group,and differences were all significantly different(P<0.05).As compared to the model group,Sanshi decoction could significantly increase the activity of MH7A and inhibit the level of apoptosis,and that the differences between them were statistically significant(P<0.05 and P<0.01).Conclusion:Sanshi decoction can achieve the therapeutic effect of gouty arthritis by inhibiting P2X7R/PKR pathway activation,thus reducing the activation level of NLRP3.展开更多
[Objectives]To investigate the preventive effects of Wumen Gumi Bao Decoction(WMGBD)on estrogen deficiency-induced bone loss.[Methods]Three-month-old Sprague-Dawley rats were ovariectomized(OVX)and then treated with W...[Objectives]To investigate the preventive effects of Wumen Gumi Bao Decoction(WMGBD)on estrogen deficiency-induced bone loss.[Methods]Three-month-old Sprague-Dawley rats were ovariectomized(OVX)and then treated with WMGBD,and their admixtures for six weeks.The bone trabecular microstructure,bone histopathological examination were determined in the rat femur tissue,and serum biomarkers of bone formation and resorption were analyzed by ELISA,and the protein expressions of Wnt3a,β-catenin,and phosphorylatedβ-catenin(p-β-catenin)were analyzed by Western blot.Statistical analysis was conducted by using one-way analysis of variance(ANOVA)followed by LSD post hoc analysis or independent samples t test using the scientific statistic software SPSS version 20.0.[Results]WMGBD could promote osteosis and ameliorate bone loss to improve the repair of cracked bone trabeculae of OVX rats.Furthermore,WMGBD also could prevent OVX-induced decrease in collagen fibers in the femoral tissue of ovariectomized rats and promote the regeneration of new bone or cartilage tissue,while WMGBD could activate the Wnt3a/β-catenin pathway.[Conclusions]WMGBD could ameliorate estrogen deficiency-induced bone loss via the regulation of Wnt3a/β-catenin pathway.展开更多
Objective:Baoyuan decoction(BYD)is a traditional Chinese formula with myocardial protection efficacy validated by modern pharmacological tests.The present study aimed to investigate the effect and mechanism of BYD on ...Objective:Baoyuan decoction(BYD)is a traditional Chinese formula with myocardial protection efficacy validated by modern pharmacological tests.The present study aimed to investigate the effect and mechanism of BYD on alleviating myocardial infarction(MI).Methods:Nuclear magnetic resonance-based serum and urinary metabolomics were employed to explore the metabolic regulation effects of BYD in rats with MI induced by left anterior descending ligation.Oxygen-glucose deprivation/recovery(OGD/R)model in H9c2 cells and multiple molecular biology approaches were used to clarify the underlying action mechanisms of BYD.Results:BYD treatment recovered the serum and urinary metabolite profiles of the MI rats toward normal metabolic status and significantly improved mitochondrial energy metabolism and apoptosis pathways perturbed by MI.Analysis of the molecular mechanism of BYD indicated that it suppressed OGD/R-induced H9c2 cell apoptosis in a concentration-dependent manner by inhibiting the mitochondria-dependent caspase-9/3-poly ADP-ribose polymerase pathway.Conclusions:Our results demonstrate that BYD protects against myocardial apoptosis via the mitochondrial metabolic and apoptosis pathways.They also provide novel insights into the clinical application of BYD for the treatment of ischemic heart diseases.展开更多
基金Supported by the Scientific Foundation of Administration of Traditional Chinese Medicine of Hebei Province,China,No.2023257.
文摘BACKGROUND Jianpi Gushen Huayu Decoction(JPGS)has been used to clinically treat diabetic nephropathy(DN)for many years.However,the protective mechanism of JPGS in treating DN remains unclear.AIM To evaluate the therapeutic effects and the possible mechanism of JPGS on DN.METHODS We first evaluated the therapeutic potential of JPGS on a DN mouse model.We then investigated the effect of JPGS on the renal metabolite levels of DN mice using non-targeted metabolomics.Furthermore,we examined the effects of JPGS on c-Jun N-terminal kinase(JNK)/P38-mediated apoptosis and the inflammatory responses mediated by toll-like receptor 4(TLR4)/nuclear factor-kappa B(NF-κB)/NOD-like receptor family pyrin domain containing 3(NLRP3).RESULTS The ameliorative effects of JPGS on DN mice included the alleviation of renal injury and the control of inflammation and oxidative stress.Untargeted metabolomic analysis revealed that JPGS altered the metabolites of the kidneys in DN mice.A total of 51 differential metabolites were screened.Pathway analysis results indicated that nine pathways significantly changed between the control and model groups,while six pathways significantly altered between the model and JPGS groups.Pathways related to cysteine and methionine metabolism;alanine,tryptophan metabolism;aspartate and glutamate metabolism;and riboflavin metabolism were identified as the key pathways through which JPGS affects DN.Further experimental validation showed that JPGS treatment reduced the expression of TLR4/NF-κB/NLRP3 pathways and JNK/P38 pathway-mediated apoptosis related factors.CONCLUSION JPGS could markedly treat mice with streptozotocin(STZ)-induced DN,which is possibly related to the regulation of several metabolic pathways found in kidneys.Furthermore,JPGS could improve kidney inflammatory responses and ameliorate kidney injuries in DN mice via the TLR4/NF-κB/NLRP3 pathway and inhibit JNK/P38 pathwaymediated apoptosis in DN mice.
基金supported by the Xiamen High-Level Health Talents Introduction and Training Project(Xiaweidang 2021-124)the National Natural Science Foundation of China(No.81774319).
文摘Background:The development and prognosis of breast cancer are intricately linked to psychological stress.In addition,depression is the most common psychological comorbidity among breast cancer survivors,and reportedly,Fang-Xia-Dihuang decoction(FXDH)can effectively manage depression in such patients.However,its pharmacological and molecular mechanisms remain obscure.Methods:Public databases were used for obtaining active components and related targets.Main active components were further verified by ultra-high-performance liquid chromatography-high-resolution mass spectrometry(UPLC-HRMS).Protein–protein interaction and enrichment analyses were taken to predict potential hub targets and related pathways.Molecule docking was used to understand the interactions between main compounds and hub targets.In addition,an animal model of breast cancer combined with depression was established to evaluate the intervention effect of FXDH and verify the pathways screened by network pharmacology.Results:174 active components of FXDH and 163 intersection targets of FXDH,breast cancer,and depression were identified.Quercetin,methyl ferulate,luteolin,ferulaldehyde,wogonin,and diincarvilone were identified as the principal active components of FXDH.Protein–protein interaction and KEGG enrichment analyses revealed that the phosphoinositide-3-kinase–protein kinase B(PI3K/AKT)and Janus kinase/signal transducer and activator of transcription(JAK2/STAT3)signaling pathways played a crucial role in mediating the efficacy of FXDH for inhibiting breast cancer progression induced by depression.In addition,in vivo experiments revealed that FXDH ameliorated depression-like behavior in mice and inhibited excessive tumor growth in mice with breast cancer and depression.FXDH treatment downregulated the expression of epinephrine,PI3K,AKT,STAT3,and JAK2 compared with the control treatment(p<0.05).Molecular docking verified the relationship between the six primary components of FXDH and the three most important targets,including phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit alpha(PIK3CA),AKT,and STAT3.Conclusion:This study provides a scientific basis to support the clinical application of FXDH for improving depression-like behavior and inhibiting breast cancer progression promoted by chronic stress.The therapeutic effects FXDH may be closely related to the PI3K/AKT and JAK2/STAT3 pathways.This finding helps better understand the regulatory mechanisms underlying the efficacy of FXDH.
基金Supported by the Key Program of Shandong Province,China,No.2016CYJS08A01-6.
文摘BACKGROUND In China banxia xiexin decoction(BXD)has been used in treating gastric cancer(GC)for thousands of years and BXD has a good role in reversing GC histopathology,but its chemical composition and action mechanism are still unknown.AIM To investigate the mechanism of action of BXD against GC based on transcriptomics,network pharmacology,in vivo and in vitro experiments.METHODS The transplanted tumor model was prepared,and the nude mouse were pathologically examined after administration,and hematoxylin-eosin staining was performed.The active ingredients of BXD were quality controlled and identified using ultra-performance liquid chromatography tandem quadrupole electrostatic field orbitrap mass spectrometry(UPLC-Q-Orbitrap MS/MS),and traditional Chinese medicines systems pharmacology platform,drug bank and the Swiss target prediction platform to predict the relevant targets,the differentially expressed genes(DEGs)of GC were screened by RNA-seq sequencing,and the overlapping targets were analyzed to obtain the key targets and pathways.Cell Counting Kit-8,apoptosis assay,cell migration and Realtime fluorescence quantitative polymerase chain reaction were used for in vitro experiments.RESULTS All dosing groups inhibited the growth of transplanted tumors in laboratory-bred strain nude,with the capecitabine group and the BXD medium-dose group being the best.A total of 29 compounds and 859 potential targets in BXD were identified by UPLC-Q-Orbitrap MS/MS and network pharmacology,RNA-seq sequencing found 4767 GC DEGs,which were combined with network pharmacology and analyzed 246 potential therapeutic targets were obtained and pathway results showed that BXD may against GC through the Phosphoinositide 3-kinase(PI3K)/protein kinase B(AKt)signaling pathway.In vitro cellular experiments confirmed that BXDcontaining serum and LY294002 could inhibit the proliferation of GC cells,promote apoptosis,and inhibit the migration of GC cells by decreasing the expression of EGFR,PIK3CA,IL6,BCL2 and AKT1 in the PI3K-Akt pathway in MGC-803 expression.CONCLUSION BXD has the effect of inhibiting tumor growth rate and delaying the development of GC.Its mechanism of action may be related to the regulation of PI3K-Akt signaling pathway.
基金Heilongjiang Provincial Health Commission Scientific Research Topic (No.20222121020595)。
文摘Objective:To observe the effect of Qishen decoction on TGR5-mediated activation of NLRP3 inflammasome,so as to clarify the molecular mechanism of its inhibition of macrophage M1-type polarisation to ameliorate non-alcoholic steatohepatitis;Methods:Mouse macrophage cell line RAW264.7 was randomly divided into a control group,model group,Qishen decoction group,TGR5 agonist group and Qishen decoction+TGR5 agonist group.Except for the control group,the remaining groups were constructed the macrophage NLRP3 activation model by palmitic acid induction,and the corresponding drugs were given to intervene.ELISA was used to detect the levels of TNF-α,IL-6,IL-1βand CXCL2 in macrophage supernatants,flow cytometry was used to detect the expression levels of macrophage polarisation marker molecules CD86 and iNOS,and Western blot was used to detect the expression of the TGR5/STAT1/STAT6 signaling pathway and the expression of NLRP3 inflammasome-associated proteins,respectively.Results:Compared with the control group,the contents of macrophages TNF-α,IL-6,IL-1β,CXCL2 and the proportion of macrophages with positive expression of CD86 and iNOS were significantly increased in the model group,and the differences were all statistically significant(P<0.01).Compared with the model group,the contents of TNF-α,IL-6,IL-1β,CXCL2 and the proportion of macrophages with positive expression of CD86 and iNOS were significantly decreased in the Qishen decoction group,and the differences were all statistically significant(P<0.01).In addition,the expression of NLRP3 and Pro-IL-1βproteins in the macrophage lysate and the expression of Caspase-1 p10,Caspase-1 p20 and IL-1βp17 proteins in the cell supernatant of the model group were significantly increased when compared with the control group,and the differences were all statistically significant(P<0.01).Compared with the model group,the expression of NLRP3 and Pro-IL-1βproteins in macrophage lysate and the expression of Caspase-1 p10,Caspase-1 p20 and IL-1βp17 proteins in cell supernatant of the Qishen decoction were significantly reduced,and the differences were all statistically significant(P<0.01);Conclusion:Qishen decoction can inhibit the activation of NLRP3 inflammasome in macrophages by inhibiting the TGR5/STAT1/STAT6 signaling pathway,thereby inhibiting macrophage M1 polarization and improving inflammatory response.
基金Heilongjiang Province Tradit Chin Med Research Projec(No.ZHY19-006)。
文摘Objective:To observe the effect of Sanshi decoction on BRD4/NF-κB/NLRP3 pathwaymediated macrophage pyroptosis,so as to elucidate the molecular mechanism of Sanshi decoction in the treatment of gouty arthritis.Methods:THP-1 was induced into macrophages with foboside and the divided into the control group,model group,low-dose,medium-dose,high-dose group of Sanshi decoction,and BRD4 inhibitor group.Except for the control group,the remaining groups were induced with monosodium urate crystals to construct a gouty arthritis cell model.The activity of macrophages was detected by CCK8,the level of macrophage pyroptosis was detected by flow cytometry,the activity of LDH,the content of IL-1β and IL-18 were detected by enzyme-linked immunosorbent assay,and the expression of related proteins in the BRD4/NF-κB/NLRP3 pathway was detected by Western blot.Results:Compared with the control group,macrophage activity was decreased in the model group,and the level of pyroptosis,LDH activity,contents of IL-1β and IL-18,expression levels of BRD4,p-NF-kB p65,NLRP3,Caspase-1 p20,and IL-1β protein were significantly up-regulated,the differences were statistically significant(P<0.05 and P<0.01).Compared with the model group,macrophage activity was up-regulated in the Sanshi Decoction,and the level of pyroptosis,LDH activity,IL-1β and IL-18 contents,expression levels of BRD4,p-NF-kB p65,NLRP3,Caspase-1 p20,and IL-1β protein were significantly decreased with statistically significant differences(P<0.05 and P<0.01).Conclusion:Sanshi decoction inhibits macrophage pyroptosis by inhibiting BRD4/NF-κB/NLRP3 pathway activation,thus improving the inflammation level of gouty arthritis.
基金Heilongjiang Province Traditional Chinese Medicine Research Project(No.ZHY19-006)。
文摘Objective:To observe the effect of Sanshi decoction on P2X7R/PKR pathway-mediated activation of macrophage NLRP3 inflammasome to elucidate the molecular mechanism of Sanshi decoction in the treatment of gouty arthritis.Methods:THP-1 macrophages were divided into control group,model group,low dose group,medium dose group,high dose group of Sanshi decoction and inhibitor group.The remaining groups were induced with monosodium urate crystals to establish a gouty arthritis cell model except the control group.Flow cytometry was used to detect macrophage ROS levels in each group,ELISA to detect MDA levels and SOD and GSH-PX activities in each group,and Western blot to detect P2X7R/PKR pathway and NLRP3 inflammasome-associated protein expression.We also used CCK-8 and flow cytometry to measure MH7A activity and apoptotic levels.Results:Compared with the control group,the ROS level,the content of MDA,the activities of SOD and GSH-PX were significantly increased,and the expression levels of NLRP3,full-length IL-1β,pro-IL-1β,full-length IL-18,pro-IL-18,full-length caspase-1,GSDMD-NT,P2X7R and p-PKR protein expression levels were significantly upregulated,and GSDMD-FL protein expression was significantly downregulated in the model group,and that the differences between them were statistically significant(P<0.05 and P<0.01).Compared with the model group,Sanshi decoction could reduce macrophage ROS levels,MDA content,SOD and GSHPX activities,and downregulate macrophage NLRP3,mature IL-1β,pro IL-1β,mature IL-18,pro IL-18,mature caspase-1,GSDMD-NT,P2X7R and p-PKR protein expression,and upregulate GSDMD-FL protein expression,with statistically significant differences(P<0.05 and P<0.01).In addition,MH7A activity was downregulated,and apoptosis level was upregulated in the model group in comparison with the control group,and differences were all significantly different(P<0.05).As compared to the model group,Sanshi decoction could significantly increase the activity of MH7A and inhibit the level of apoptosis,and that the differences between them were statistically significant(P<0.05 and P<0.01).Conclusion:Sanshi decoction can achieve the therapeutic effect of gouty arthritis by inhibiting P2X7R/PKR pathway activation,thus reducing the activation level of NLRP3.
基金Supported by Senile Health Research Project of Jiangsu Provincial Health Commission of China(LKZ2023217)Natural Science Foundation of Nanjing University of Traditional Chinese Medicine(XAR2021041)+1 种基金Suzhou Science and Technology Development Plan Project(SYSD2020215,SKY2022202)The Ninth Batch of Suzhou Gusu Health Key Talents Project(GSWS2022107)。
文摘[Objectives]To investigate the preventive effects of Wumen Gumi Bao Decoction(WMGBD)on estrogen deficiency-induced bone loss.[Methods]Three-month-old Sprague-Dawley rats were ovariectomized(OVX)and then treated with WMGBD,and their admixtures for six weeks.The bone trabecular microstructure,bone histopathological examination were determined in the rat femur tissue,and serum biomarkers of bone formation and resorption were analyzed by ELISA,and the protein expressions of Wnt3a,β-catenin,and phosphorylatedβ-catenin(p-β-catenin)were analyzed by Western blot.Statistical analysis was conducted by using one-way analysis of variance(ANOVA)followed by LSD post hoc analysis or independent samples t test using the scientific statistic software SPSS version 20.0.[Results]WMGBD could promote osteosis and ameliorate bone loss to improve the repair of cracked bone trabeculae of OVX rats.Furthermore,WMGBD also could prevent OVX-induced decrease in collagen fibers in the femoral tissue of ovariectomized rats and promote the regeneration of new bone or cartilage tissue,while WMGBD could activate the Wnt3a/β-catenin pathway.[Conclusions]WMGBD could ameliorate estrogen deficiency-induced bone loss via the regulation of Wnt3a/β-catenin pathway.
基金financially supported by the National Natural Sciences Foundation of China(Nos.81530097 and 81222051)the National Key Technology R&D Program“New Drug Innovation”of China(No.2017ZX09101003-008-003).
文摘Objective:Baoyuan decoction(BYD)is a traditional Chinese formula with myocardial protection efficacy validated by modern pharmacological tests.The present study aimed to investigate the effect and mechanism of BYD on alleviating myocardial infarction(MI).Methods:Nuclear magnetic resonance-based serum and urinary metabolomics were employed to explore the metabolic regulation effects of BYD in rats with MI induced by left anterior descending ligation.Oxygen-glucose deprivation/recovery(OGD/R)model in H9c2 cells and multiple molecular biology approaches were used to clarify the underlying action mechanisms of BYD.Results:BYD treatment recovered the serum and urinary metabolite profiles of the MI rats toward normal metabolic status and significantly improved mitochondrial energy metabolism and apoptosis pathways perturbed by MI.Analysis of the molecular mechanism of BYD indicated that it suppressed OGD/R-induced H9c2 cell apoptosis in a concentration-dependent manner by inhibiting the mitochondria-dependent caspase-9/3-poly ADP-ribose polymerase pathway.Conclusions:Our results demonstrate that BYD protects against myocardial apoptosis via the mitochondrial metabolic and apoptosis pathways.They also provide novel insights into the clinical application of BYD for the treatment of ischemic heart diseases.