The Xiangshan uranium ore field is the largest volcanic rock hosted uranium deposit in China.The host rock is a volcanic intrusive complex,including rhyodacite,porphyroclastic lava and late stage sub-volcanic rocks.In...The Xiangshan uranium ore field is the largest volcanic rock hosted uranium deposit in China.The host rock is a volcanic intrusive complex,including rhyodacite,porphyroclastic lava and late stage sub-volcanic rocks.In this study,zircons from an early stage rhyodacite and a late stage rhyodacite porphyry were dated by SHRIMP and LA-ICP-MS U-Pb methods,and their Hf isotopic compositions were measured by LA-MC-ICP-MS.206Pb/238U ages of 135.1±1.7 and 134.8±1.1 Ma were obtained for the rhyodacite and rhyodacitic porphyry,respectively.These accurate ages indicate that the Xiangshan volcanic-intrusive complex formed in the Early Cretaceous rather than in the Late Jurassic,as concluded in some previous studies.By the Early Cretaceous,the tectonic setting of the area has evolved into a back-arc extensional setting,possibly related to subduction of the paleo-Pacific plate.The close ages of the(early) eruptive rhyodacite and the(late) hypabyssal rhyodacitic porphyry shows that the Xiangshan volcanism was intensive and concentrated in a short time.Zircons from the rhyodacite show negative εHf(t) values of-5.7 to-8.5,with Hf depleted mantle model ages between 1550 and 1720 Ma,whereas zircons from the rhyodacitic porphyry yield εHf(t) values of-6.9 to-10.1 and Hf model ages between 1621 and 1823 Ma.These zircon Hf model ages are similar to the whole rock Nd model ages(1486 to 1911 Ma).Combined with other geochemical characteristics,the Xiangshan rhyodacite and rhyodacitic porphyry may have been derived from partial melting of the Paleo-Mesoproterozoic metamorphic rocks from the Xiangshan basement,without any significant addition of mantle-derived magma.Contribution of basement of this age is also supported by finding a Paleoproterozoic xenocrystic zircon core in the rhyodacite sample.展开更多
The gold mineralization of the Tondabo prospect, located in the northern part of the Oumé-Toumodi-Fettêkro greenstone belt, is mainly hosted in the rhyodacite and to a lesser extent in the mafic volcanics (v...The gold mineralization of the Tondabo prospect, located in the northern part of the Oumé-Toumodi-Fettêkro greenstone belt, is mainly hosted in the rhyodacite and to a lesser extent in the mafic volcanics (volcanic lavas and volcanoclastites). These rocks were affected by a hydrothermal alteration marked by quartz veins and veinlets associated with crystals of carbonates, sericite, epidote and sulfides. This hydrothermal alteration induced a pervasive alteration of the surrounding bodies with silicification, chloritization, carbonation and sericitization of the feldspars. The metalliferous paragenesis contains an abundant pyrite, with rare pyrrhotite and chalcopyrite. This mineralization indicates that the Tondabo gold prospect exhibits lithological control. The mineralized deposits are generally affected by a S1 schistosity oriented mainly N000-010° and minority N040-050° with a general dip of 60°-80°to the West;however with rare N-S orientations with a dip of 60°-80° to the East. The drilling intervals show that the highest gold contents are linked to the quartz-carbonates veins and veinlets, which are located in the highly deformed zones, characterizing local shear zones.展开更多
基金supported by Key Project from the Ministry of Education (Grant No.306007)
文摘The Xiangshan uranium ore field is the largest volcanic rock hosted uranium deposit in China.The host rock is a volcanic intrusive complex,including rhyodacite,porphyroclastic lava and late stage sub-volcanic rocks.In this study,zircons from an early stage rhyodacite and a late stage rhyodacite porphyry were dated by SHRIMP and LA-ICP-MS U-Pb methods,and their Hf isotopic compositions were measured by LA-MC-ICP-MS.206Pb/238U ages of 135.1±1.7 and 134.8±1.1 Ma were obtained for the rhyodacite and rhyodacitic porphyry,respectively.These accurate ages indicate that the Xiangshan volcanic-intrusive complex formed in the Early Cretaceous rather than in the Late Jurassic,as concluded in some previous studies.By the Early Cretaceous,the tectonic setting of the area has evolved into a back-arc extensional setting,possibly related to subduction of the paleo-Pacific plate.The close ages of the(early) eruptive rhyodacite and the(late) hypabyssal rhyodacitic porphyry shows that the Xiangshan volcanism was intensive and concentrated in a short time.Zircons from the rhyodacite show negative εHf(t) values of-5.7 to-8.5,with Hf depleted mantle model ages between 1550 and 1720 Ma,whereas zircons from the rhyodacitic porphyry yield εHf(t) values of-6.9 to-10.1 and Hf model ages between 1621 and 1823 Ma.These zircon Hf model ages are similar to the whole rock Nd model ages(1486 to 1911 Ma).Combined with other geochemical characteristics,the Xiangshan rhyodacite and rhyodacitic porphyry may have been derived from partial melting of the Paleo-Mesoproterozoic metamorphic rocks from the Xiangshan basement,without any significant addition of mantle-derived magma.Contribution of basement of this age is also supported by finding a Paleoproterozoic xenocrystic zircon core in the rhyodacite sample.
文摘The gold mineralization of the Tondabo prospect, located in the northern part of the Oumé-Toumodi-Fettêkro greenstone belt, is mainly hosted in the rhyodacite and to a lesser extent in the mafic volcanics (volcanic lavas and volcanoclastites). These rocks were affected by a hydrothermal alteration marked by quartz veins and veinlets associated with crystals of carbonates, sericite, epidote and sulfides. This hydrothermal alteration induced a pervasive alteration of the surrounding bodies with silicification, chloritization, carbonation and sericitization of the feldspars. The metalliferous paragenesis contains an abundant pyrite, with rare pyrrhotite and chalcopyrite. This mineralization indicates that the Tondabo gold prospect exhibits lithological control. The mineralized deposits are generally affected by a S1 schistosity oriented mainly N000-010° and minority N040-050° with a general dip of 60°-80°to the West;however with rare N-S orientations with a dip of 60°-80° to the East. The drilling intervals show that the highest gold contents are linked to the quartz-carbonates veins and veinlets, which are located in the highly deformed zones, characterizing local shear zones.