BACKGROUND Bioinformatics analysis showed that the expression of the poly(A)-specific ribonuclease(PARN)gene in gastric cancer,head and neck squamous cell carcinoma,melanoma,cervical cancer and lung squamous cell carc...BACKGROUND Bioinformatics analysis showed that the expression of the poly(A)-specific ribonuclease(PARN)gene in gastric cancer,head and neck squamous cell carcinoma,melanoma,cervical cancer and lung squamous cell carcinoma tissues was significantly higher than that in normal tissues and was associated with high stage and poor prognosis.The expression of the PARN gene in esophageal cancer(EC)tissue is also significantly higher than that in normal tissues,but the effect of PARN on the proliferation,migration and invasion of EC cells remains unclear.AIM To investigate the relationship between PARN and the proliferation,migration and invasion of EC cells.METHODS The EC tissues of 91 patients after EC surgery and 63 paired precancerous healthy tissues were collected.PARN mRNA levels were measured using a tissue microarray,and the PARN expression level was evaluated using immunohistochemistry to analyze the relationship between PARN expression and clinicopathologic features as well as the survival and prognosis of patients.In addition,the effects of PARN gene knockout on tumor cell proliferation,invasion and migration were studied by using shRNA during the in vitro culture of EC cell lines Eca-109 and TE-1,and the effects of the PARN gene on tumor growth in vivo were verified by a xenotransplantation nude mice model.RESULTS The expression of PARN in EC tissues was higher than that in adjacent normal tissues,and the level of PARN expression was significantly positively correlated with lymphatic metastasis.Patients with high PARN levels had poor overall survival.BIM,IGFBP-5 and p21 levels were significantly increased in the PARN knockout group,while the expression levels of the antiapoptotic proteins Survivin and sTNF-R1 were significantly decreased in the apoptotic antibody array data.In addition,the expression levels of Akt,p-Akt,PIK3CA and CCND1 in the downstream signaling pathway regulating EC progression were significantly decreased.The culture of EC cell lines confirmed that the apoptosis rate of EC cells was significantly increased,the growth and proliferation of tumor cells were significantly inhibited,and the invasion and migration ability of tumor cells were significantly decreased after PARN gene knockout.In vivo experiments of BALB/c nude mice transfected with Eca-109 cells expressing control shRNA(sh-NC)and PARN shRNA(sh-PARN)showed that the tumor volume and weight of nude mice treated with sh-PARN were significantly decreased compared with those of nude mice treated with sh-NC,indicating that PARN knockdown significantly inhibited tumor growth in vivo.CONCLUSION PARN has antiapoptotic effects on EC cells and promotes their proliferation,invasion and migration,which is associated with the development of EC and poor patient prognosis.PARN may become a potential target for the diagnosis,prognosis prediction and treatment of EC.展开更多
To explore the functions of human ribonuclease 9(RNase 9),we constructed a mammalian fusion expression vector pcDNA-hRNase9,prepared recombinant human RNase 9-His fusion protein from HEK293T cells and determined its N...To explore the functions of human ribonuclease 9(RNase 9),we constructed a mammalian fusion expression vector pcDNA-hRNase9,prepared recombinant human RNase 9-His fusion protein from HEK293T cells and determined its N-terminal amino acid sequences.According to the determined mature protein,recombinant human RNase 9 was prepared in E.coli.Ribonucleolytic activity and antibacterial activity of recombinant human RNase 9 were detected,and the distribution of human RNase 9 on tissues and ejaculated spermatozoa and in vitro capacitated spermatozoa were analyzed via indirect immunofluorescence assay.The results showed that recombinant human RNase 9 did not exhibit detectable ribonucleolytic activity against yeast tRNA,but exhibited antibacterial activity,in a concentration/time dependent manner,against E.coli.Immunofluorescent analyses showed that the predicted human RNase 9 was present throughout the epididymis,but not present in other tissues examined,and human RNase 9 was also present on the entire head and neck regions of human ejaculated spermatozoa and in vitro capacitated spermatozoa.These results suggest that human RNase 9 may play roles in host defense of male reproductive tract.展开更多
Objective:The association between ribonuclease L(RNASEL)gene polymorphisms and prostate cancer risk has been widely reported,but the results of these studies remained controversial and underpowered.We performed a m...Objective:The association between ribonuclease L(RNASEL)gene polymorphisms and prostate cancer risk has been widely reported,but the results of these studies remained controversial and underpowered.We performed a meta-analysis of 28 studies to evaluate the association between Arg462Gln and Asp541Glu polymorphisms in the RNASEL gene and prostate cancer risk.Methods:Odds ratios(ORs)with 95%confidence intervals(CIs) were estimated to assess the association between RNASEL polymorphisms and prostate cancer risk.Results:A significantly increased prostate cancer risk was found for the Arg462Gln polymorphism in Africans(Gln/Gln vs Arg/Arg:OR=2.50,95%CI=1.28-4.87;Gln/Gln vs Gln/Arg+Arg/Arg:OR=2.54,95%CI=1.30-4.95),but not in Europeans and Asians.Additionally,the Asp541Glu polymorphism was associated with increased total prostate cancer risk(Glu-allele vs Asp-allele:OR=1.04,95%CI=1.01-1.07;Glu/Glu vs Asp/Asp:OR=1.22,95%CI= 1.03-1.46;Glu/Glu vs Glu/Asp+Asp/Asp:OR=1.09,95%CI=1.02-1.16).In the stratified analysis for the Asp541Glu polymorphism,there was a significantly increased prostate cancer risk in Africans and Europeans,and in hospital-based prostate cancer cases.Conclusion:The meta-analysis results showed evidence that RNASEL Arg462Gln and Asp541Glu polymorphisms are associated with prostate cancer risk and could be low-penetrance prostate cancer susceptibility biomarkers.展开更多
Background: Viruses can cause different diseases in plants. To prevent viral infections, plants are treated with chemical compounds and antiviral agents. Chemical antiviral agents usually have narrow specificity, whic...Background: Viruses can cause different diseases in plants. To prevent viral infections, plants are treated with chemical compounds and antiviral agents. Chemical antiviral agents usually have narrow specificity, which limits their wide application. Alternative antiviral strategy is associated with the use of microbial enzymes, which are less toxic and are readily decomposed without accumulation of harmful substances. The aim of this work is to study the effect of Bacillus pumilus ribonuclease on various phytopathogenic viruses with specific focus on the ability of enzyme to eliminate them from plant explants in vitro. Materials and methods: Extracellular ribonuclease of B. pumilus is tested as an antiviral agent. To study the antiviral effect of RNase, depending on concentration and the time of application several plant-virus model systems are used. Virus detection is conducted by serological testing and RT-PCR. Results: Bacillus pumilus ribonuclease possesses antiviral activity against plant Rna-viruses RCMV (red clover mottle virus), PVX (Potato Virus X) and AMV (Alfalfa Mosaic Virus). The maximum inhibitory effect against actively replicating viruses is observed when plants are treated with the enzyme in the concentration of 100 ug/ml prior to infection. In case of local necrosis ribonuclease in the concentration of 1 ug/ml completely inhibits the development of RCMV virus on bean plants. The enzyme is able to penetrate plants and inhibit the development of viral infection, inhibiting effect for untreated surfaces decreased on average for 20%. It is also found that B. pumilus ribonuclease protects apical explants of sprouts of potato tubers from PVM and PVS viruses. Conclusion: B. pumilus ribonuclease possesses antiviral activity against plant Rna-viruses and produces viruses-free plants in the apical meristem culture.展开更多
2-Chlorocyclohexa-2,5-diene-1,4-dione (CBQ) or 2-chloro1,4-benzquinone is one of the common metabolites of polycyclic aromatic hydrocarbons generated through industrial processes. This report describes the biological ...2-Chlorocyclohexa-2,5-diene-1,4-dione (CBQ) or 2-chloro1,4-benzquinone is one of the common metabolites of polycyclic aromatic hydrocarbons generated through industrial processes. This report describes the biological effects of CBQ toward ribonuclease A (RNase). We also investigated the inhibition of RNase modifications and the reactivity of CBQ toward selected amino acids. The study was carried out by incubating RNase or amino acids with CBQ in a concentration- and a time-dependent manner at 37°C and pH 7.0. SDS-PAGE results showed oligomerization as well as polymeric aggregation of RNase when incubated with CBQ as early as in 10 min. CBQ-induced RNase modifications were inhibited in the presence of NADH or ascorbic acid. CBQ reactivity toward selected amino acids was also evaluated by determining the second-order rate constants for the reactions of CBQ with selected amino acids. It was found that the reactivity toward CBQ decreased in the order of lysine > threonine > serine >> aspartate > cysteine.展开更多
RNA-binding proteins (RBPs) are central players in post-transcriptional regulation and immune homeostasis. The ribonuclease and RBP Regnase-1 exerts critical roles in both immune cells and non-immune cells. Its expr...RNA-binding proteins (RBPs) are central players in post-transcriptional regulation and immune homeostasis. The ribonuclease and RBP Regnase-1 exerts critical roles in both immune cells and non-immune cells. Its expression is rapidly induced under diverse conditions including microbial infections, treatment with inflammatory cytokines and chemical or mechanical stimulation. Regnase-1 activation is transient and is subject to negative feedback mechanisms including proteasome-mediated degradation or mucosa-associated lymphoid tissue 1 (MALT1) mediated cleavage. The major function of Regnase-1 is promoting mRNA decay via its ribonuclease activity by specifically targeting a subset of genes in different cell types. In monocytes, Regnase-1 downregulates IL-6 and IL-12B mRNAs, thus mitigating inflammation, whereas in T cells, it restricts T-cell activation by targeting c-Rel, Ox40 and 11-2 transcripts. In cancer cells, Regnase-1 promotes apoptosis by inhibiting anti-apoptotic genes including Bcl2L1, Bcl2A1, RelB and Bcl3. Together with up-frameshift protein-1 (UPF1), Regnase-1 specifically cleaves mRNAs that are active during translation by recognizing a stem-loop (SL) structure within the 3'UTRs of these genes in endoplasmic reticulum-bound ribosomes. Through this mechanism, Regnase-1 rapidly shapes mRNA profiles and associated protein expression, restricts inflammation and maintains immune homeostasis. Dysregulation of Regnase-1 has been described in a multitude of pathological states including autoimmune diseases, cancer and cardiovascular diseases. Here, we provide a comprehensive update on the function, regulation and molecular mechanisms of Regnase-1, and we propose that Regnase-1 may function as a master rapid response gene for cellular adaption triggered by microenvironmental changes.展开更多
Filamentous fungal pathogens secrete effectors that modulate host immunity and facilitate infection. Fusarium graminearum is an important plant pathogen responsible for various devastating diseases. However, little is...Filamentous fungal pathogens secrete effectors that modulate host immunity and facilitate infection. Fusarium graminearum is an important plant pathogen responsible for various devastating diseases. However, little is known about the function of effector proteins secreted by F. graminearum. Herein, we identified several effector candidates in the F. graminearum secretome. Among them, the secreted ribonuclease Fg12 was highly upregulated during the early stages of F. graminearum infection in soybean;its deletion compromised the virulence of F. graminearum. Transient expression of Fg12 in Nicotiana benthamiana induced cell death in a light-dependent manner. Fg12 possessed ribonuclease(RNase) activity, degrading total RNA. The enzymatic activity of Fg12 was required for its cell death-promoting effects. Importantly, the ability of Fg12 to induce cell death was independent of BAK1/SOBIR1, and treatment of soybean with recombinant Fg12 protein induced resistance to various pathogens, including F. graminearum and Phytophthora sojae. Overall, our results provide evidence that RNase effectors not only contribute to pathogen virulence but also induce plant cell death.展开更多
Self-incompatibility is an intraspecific reproductive barrier to prevent self-fertilization inthe flowering plants. In many species, self-incompatibility is controlled by a single S locus with multiple alleles. So far...Self-incompatibility is an intraspecific reproductive barrier to prevent self-fertilization inthe flowering plants. In many species, self-incompatibility is controlled by a single S locus with multiple alleles. So far, the only gene known in the S locus of the Solanaceae, Scrophulariaceae and Rosaceae encodes a class of ribonucleases, called self-incompatibility ribonucleases (S RNases), which have been shown to mediate stylar expression of self-incompatible reaction. As the first step to investigate their three-dimensional structure, we successfully expressed three biologically active S RNases of Antirrihnum (S2, S4 and S5) in Escherichia coli (E. coli). Their functional expressions caused no detrimental effect on host bacteria growth and provided a basis for a large scale preparation of S RNase proteins. Possible reasons for non-lethality of S RNases on E. coliare discussed.展开更多
Ribonuclease 6(RNase6 or RNase K6)is a protein that belongs to a superfamily thought to be the sole vertebrate-specific enzyme known for a wide range of physiological functions,including digestion,cytotoxicity,a...Ribonuclease 6(RNase6 or RNase K6)is a protein that belongs to a superfamily thought to be the sole vertebrate-specific enzyme known for a wide range of physiological functions,including digestion,cytotoxicity,angiogenesis,male reproduction and host defense.In our study,51 functional genes and 11 pseudogenes were identified from 27 Rodentia species.Intriguingly,in the 3 main lineages of rodents there were multiple RNase6s identified in all species of Ctenohystrica,whereas only a single RNase6 was observed in other Rodentia species examined except for 2 species in the mouse-related clade.The evolutionary scenario of“birth(gene duplication)and death(gene deactivation)”and gene sorting have been demonstrated in Ctenohystrica.In addition,bursts of positive selection,diversification of isoelectric point and positive net charge have been identified in Ctenohystrica,especially at two key sites that are involved in antimicrobial function.Site Trp30 has undergone positive selection and Ile45 has changed into other residues in Group B and Group C of the Ctenohystrica.Our results demonstrated a complex and intriguing evolutionary pattern of rodent RNase6,and indicated that functional modification may have occurred,which establishes an important theoretical foundation for future functional assays in rodent RNase6.展开更多
The Clustered Regularly Interspaced Short _Palindromic Repeats (CRISPR)-CRISPR-associated (Cas) system is an adaptive immune system in bacteria and archaea that resists exogenous invasion through nucleic acid-medi...The Clustered Regularly Interspaced Short _Palindromic Repeats (CRISPR)-CRISPR-associated (Cas) system is an adaptive immune system in bacteria and archaea that resists exogenous invasion through nucleic acid-mediated cleavage. In the type III-A system, the Csm complex contains five effectors and a CRISPR RNA, which edits both single stranded RNA and double stranded DNA. It has recently been demonstrated that cyclic oligoadenylates (cOAs), which are synthesized by the Csm complex, act as second messengers that bind and activate Csm6. Here, we report the crystal structures of Staphylococcus epiderrnidis Csm3 (SeCsm3) and an N-terminally truncated Csm6 (SeCsm6AN) at 2.26 and 2.0 A, respectively. The structure of SeCsm3 highly resembled previously reported Csm3 structures from other species; however, it provided novel observations allowing further enzyme characterization. The homodimeric SeCsm6AN folds into a compact structure. The dimerization of the HEPN domain leads to the formation of the ribonuclease active site, which is consistent with the reported Csm6 structures. Altogether, our studies provide a struc- tural view of the ribonuclease activity mediated by Csm3 and Csm6 of the type III-A CRISPR-Cas system.展开更多
The unfolding of proteins during denaturation by guanidine or urea has been extensively studied. However, the methods hitherto employed usually provide only a limited amount of information on gross changes of such mol...The unfolding of proteins during denaturation by guanidine or urea has been extensively studied. However, the methods hitherto employed usually provide only a limited amount of information on gross changes of such molecular properties as shape, size, or the exposure of buried aromatic residues. CD studies are hampered by high absorption of the denaturants commonly employed in the far ultraviolet region. Recent development in Fourier展开更多
The thermal transition of bovine pancreatic ribonuclease A (RNase A) was investigated using proton nuclear magnetic resonance (NMR). Significant resonance overlap in the large native protein limits accurate assignment...The thermal transition of bovine pancreatic ribonuclease A (RNase A) was investigated using proton nuclear magnetic resonance (NMR). Significant resonance overlap in the large native protein limits accurate assignments in the 1H NMR spectrum. This study proposes extending the investigation of large proteins by dynamic analysis. Comparison of the traditional method and the correlation coefficient method suggests successful application of spectrum image analysis in dynamic protein studies by NMR.展开更多
Human placental ribonuclease inhibitor(hRI)is an acidic protein of Mr∼50kDa with unusually high contents of leucine and cysteine residues.It is a cytosolic protein that protects cells from the adventitious invasion o...Human placental ribonuclease inhibitor(hRI)is an acidic protein of Mr∼50kDa with unusually high contents of leucine and cysteine residues.It is a cytosolic protein that protects cells from the adventitious invasion of pancreatic-type ribonuclease.hRI has 32 cysteine residues,and the oxidative formation of disulfide bonds from those cysteine residues is a rapid cooperative process that inactivates hRI.The most proximal cysteine residues in native hRI are two pairs that are adjacent in sequence.In the present aork,two molecules of alanine substituting for Cys328 and Cys329 were performed by site-directed mutagenesis.The site-mutated RI cDNA was constructed into plasmid pPIC9K and then transformed Pichia pastoris GS115 by electroporation.After colony screening,the bacterium was cultured and the product was purified with affinity chromatography.The affinity of the recombinant human RI with double site mutation was examined for RNase A and its anti-oxidative effect.Results indicated that there were not many changes in the affinity for RNase A detected when compared with the wild type of RI.But the capacity of anti-oxidative effect increased by 7~9 times.The enhancement in anti-oxidative effect might be attributed to preventing the formation of disulfide bond between Cys328 and Cys329 and the three dimensional structure of RI was thereby maintained.展开更多
人核糖核酸酶A(ribonuclease A, RNaseA)家族成员有13个,分别为RNase1-RNase13,它们具有很高的序列相似性,大多含有6~8个半胱氨酸并形成分子内二硫键,以维持特有的空间结构。其中,RNase1-RNase8具有多种生物活性,可概括为3类:涉及核糖...人核糖核酸酶A(ribonuclease A, RNaseA)家族成员有13个,分别为RNase1-RNase13,它们具有很高的序列相似性,大多含有6~8个半胱氨酸并形成分子内二硫键,以维持特有的空间结构。其中,RNase1-RNase8具有多种生物活性,可概括为3类:涉及核糖核酸转录后的剪切、修饰和降解;具有抗细菌、抗真菌和抗病毒活性;以及机体免疫调节作用。而RNase9-RNase13不具有核糖核酸酶活性。因此,本文将重点对RNaseA家族成员RNase1-RNase8的结构与功能研究进行综述,重点概述决定RNaseA生物学功能的结构特征,以期指导以RNaseA为基础的抗微生物药物开发及RNaseA在机体免疫中的功能研究。展开更多
文摘BACKGROUND Bioinformatics analysis showed that the expression of the poly(A)-specific ribonuclease(PARN)gene in gastric cancer,head and neck squamous cell carcinoma,melanoma,cervical cancer and lung squamous cell carcinoma tissues was significantly higher than that in normal tissues and was associated with high stage and poor prognosis.The expression of the PARN gene in esophageal cancer(EC)tissue is also significantly higher than that in normal tissues,but the effect of PARN on the proliferation,migration and invasion of EC cells remains unclear.AIM To investigate the relationship between PARN and the proliferation,migration and invasion of EC cells.METHODS The EC tissues of 91 patients after EC surgery and 63 paired precancerous healthy tissues were collected.PARN mRNA levels were measured using a tissue microarray,and the PARN expression level was evaluated using immunohistochemistry to analyze the relationship between PARN expression and clinicopathologic features as well as the survival and prognosis of patients.In addition,the effects of PARN gene knockout on tumor cell proliferation,invasion and migration were studied by using shRNA during the in vitro culture of EC cell lines Eca-109 and TE-1,and the effects of the PARN gene on tumor growth in vivo were verified by a xenotransplantation nude mice model.RESULTS The expression of PARN in EC tissues was higher than that in adjacent normal tissues,and the level of PARN expression was significantly positively correlated with lymphatic metastasis.Patients with high PARN levels had poor overall survival.BIM,IGFBP-5 and p21 levels were significantly increased in the PARN knockout group,while the expression levels of the antiapoptotic proteins Survivin and sTNF-R1 were significantly decreased in the apoptotic antibody array data.In addition,the expression levels of Akt,p-Akt,PIK3CA and CCND1 in the downstream signaling pathway regulating EC progression were significantly decreased.The culture of EC cell lines confirmed that the apoptosis rate of EC cells was significantly increased,the growth and proliferation of tumor cells were significantly inhibited,and the invasion and migration ability of tumor cells were significantly decreased after PARN gene knockout.In vivo experiments of BALB/c nude mice transfected with Eca-109 cells expressing control shRNA(sh-NC)and PARN shRNA(sh-PARN)showed that the tumor volume and weight of nude mice treated with sh-PARN were significantly decreased compared with those of nude mice treated with sh-NC,indicating that PARN knockdown significantly inhibited tumor growth in vivo.CONCLUSION PARN has antiapoptotic effects on EC cells and promotes their proliferation,invasion and migration,which is associated with the development of EC and poor patient prognosis.PARN may become a potential target for the diagnosis,prognosis prediction and treatment of EC.
基金The authors would like to thank Mr Shou-Xin Zhang and other members of the Research Center,Yuhuangding Hospital(Yantai,China)for technical assistance.
文摘To explore the functions of human ribonuclease 9(RNase 9),we constructed a mammalian fusion expression vector pcDNA-hRNase9,prepared recombinant human RNase 9-His fusion protein from HEK293T cells and determined its N-terminal amino acid sequences.According to the determined mature protein,recombinant human RNase 9 was prepared in E.coli.Ribonucleolytic activity and antibacterial activity of recombinant human RNase 9 were detected,and the distribution of human RNase 9 on tissues and ejaculated spermatozoa and in vitro capacitated spermatozoa were analyzed via indirect immunofluorescence assay.The results showed that recombinant human RNase 9 did not exhibit detectable ribonucleolytic activity against yeast tRNA,but exhibited antibacterial activity,in a concentration/time dependent manner,against E.coli.Immunofluorescent analyses showed that the predicted human RNase 9 was present throughout the epididymis,but not present in other tissues examined,and human RNase 9 was also present on the entire head and neck regions of human ejaculated spermatozoa and in vitro capacitated spermatozoa.These results suggest that human RNase 9 may play roles in host defense of male reproductive tract.
基金supported by the program of key medical department of Jiangsu Province(No.XK17 200904)
文摘Objective:The association between ribonuclease L(RNASEL)gene polymorphisms and prostate cancer risk has been widely reported,but the results of these studies remained controversial and underpowered.We performed a meta-analysis of 28 studies to evaluate the association between Arg462Gln and Asp541Glu polymorphisms in the RNASEL gene and prostate cancer risk.Methods:Odds ratios(ORs)with 95%confidence intervals(CIs) were estimated to assess the association between RNASEL polymorphisms and prostate cancer risk.Results:A significantly increased prostate cancer risk was found for the Arg462Gln polymorphism in Africans(Gln/Gln vs Arg/Arg:OR=2.50,95%CI=1.28-4.87;Gln/Gln vs Gln/Arg+Arg/Arg:OR=2.54,95%CI=1.30-4.95),but not in Europeans and Asians.Additionally,the Asp541Glu polymorphism was associated with increased total prostate cancer risk(Glu-allele vs Asp-allele:OR=1.04,95%CI=1.01-1.07;Glu/Glu vs Asp/Asp:OR=1.22,95%CI= 1.03-1.46;Glu/Glu vs Glu/Asp+Asp/Asp:OR=1.09,95%CI=1.02-1.16).In the stratified analysis for the Asp541Glu polymorphism,there was a significantly increased prostate cancer risk in Africans and Europeans,and in hospital-based prostate cancer cases.Conclusion:The meta-analysis results showed evidence that RNASEL Arg462Gln and Asp541Glu polymorphisms are associated with prostate cancer risk and could be low-penetrance prostate cancer susceptibility biomarkers.
文摘Background: Viruses can cause different diseases in plants. To prevent viral infections, plants are treated with chemical compounds and antiviral agents. Chemical antiviral agents usually have narrow specificity, which limits their wide application. Alternative antiviral strategy is associated with the use of microbial enzymes, which are less toxic and are readily decomposed without accumulation of harmful substances. The aim of this work is to study the effect of Bacillus pumilus ribonuclease on various phytopathogenic viruses with specific focus on the ability of enzyme to eliminate them from plant explants in vitro. Materials and methods: Extracellular ribonuclease of B. pumilus is tested as an antiviral agent. To study the antiviral effect of RNase, depending on concentration and the time of application several plant-virus model systems are used. Virus detection is conducted by serological testing and RT-PCR. Results: Bacillus pumilus ribonuclease possesses antiviral activity against plant Rna-viruses RCMV (red clover mottle virus), PVX (Potato Virus X) and AMV (Alfalfa Mosaic Virus). The maximum inhibitory effect against actively replicating viruses is observed when plants are treated with the enzyme in the concentration of 100 ug/ml prior to infection. In case of local necrosis ribonuclease in the concentration of 1 ug/ml completely inhibits the development of RCMV virus on bean plants. The enzyme is able to penetrate plants and inhibit the development of viral infection, inhibiting effect for untreated surfaces decreased on average for 20%. It is also found that B. pumilus ribonuclease protects apical explants of sprouts of potato tubers from PVM and PVS viruses. Conclusion: B. pumilus ribonuclease possesses antiviral activity against plant Rna-viruses and produces viruses-free plants in the apical meristem culture.
文摘2-Chlorocyclohexa-2,5-diene-1,4-dione (CBQ) or 2-chloro1,4-benzquinone is one of the common metabolites of polycyclic aromatic hydrocarbons generated through industrial processes. This report describes the biological effects of CBQ toward ribonuclease A (RNase). We also investigated the inhibition of RNase modifications and the reactivity of CBQ toward selected amino acids. The study was carried out by incubating RNase or amino acids with CBQ in a concentration- and a time-dependent manner at 37°C and pH 7.0. SDS-PAGE results showed oligomerization as well as polymeric aggregation of RNase when incubated with CBQ as early as in 10 min. CBQ-induced RNase modifications were inhibited in the presence of NADH or ascorbic acid. CBQ reactivity toward selected amino acids was also evaluated by determining the second-order rate constants for the reactions of CBQ with selected amino acids. It was found that the reactivity toward CBQ decreased in the order of lysine > threonine > serine >> aspartate > cysteine.
基金This work was supported by the Distinguished Professorship Program of Jiangsu Province to YF the National Natural Science Foundation of China (81641164+2 种基金 81600386 81471539 and 30801350) and the Natural Science Foundation of Jiangsu Province (BK20141236). EWH is supported by NIH grants RO1CA135362 and R21AI112763. We apologize to the many scientists who made contributions to the field but have not been cited because of space limitations.
文摘RNA-binding proteins (RBPs) are central players in post-transcriptional regulation and immune homeostasis. The ribonuclease and RBP Regnase-1 exerts critical roles in both immune cells and non-immune cells. Its expression is rapidly induced under diverse conditions including microbial infections, treatment with inflammatory cytokines and chemical or mechanical stimulation. Regnase-1 activation is transient and is subject to negative feedback mechanisms including proteasome-mediated degradation or mucosa-associated lymphoid tissue 1 (MALT1) mediated cleavage. The major function of Regnase-1 is promoting mRNA decay via its ribonuclease activity by specifically targeting a subset of genes in different cell types. In monocytes, Regnase-1 downregulates IL-6 and IL-12B mRNAs, thus mitigating inflammation, whereas in T cells, it restricts T-cell activation by targeting c-Rel, Ox40 and 11-2 transcripts. In cancer cells, Regnase-1 promotes apoptosis by inhibiting anti-apoptotic genes including Bcl2L1, Bcl2A1, RelB and Bcl3. Together with up-frameshift protein-1 (UPF1), Regnase-1 specifically cleaves mRNAs that are active during translation by recognizing a stem-loop (SL) structure within the 3'UTRs of these genes in endoplasmic reticulum-bound ribosomes. Through this mechanism, Regnase-1 rapidly shapes mRNA profiles and associated protein expression, restricts inflammation and maintains immune homeostasis. Dysregulation of Regnase-1 has been described in a multitude of pathological states including autoimmune diseases, cancer and cardiovascular diseases. Here, we provide a comprehensive update on the function, regulation and molecular mechanisms of Regnase-1, and we propose that Regnase-1 may function as a master rapid response gene for cellular adaption triggered by microenvironmental changes.
基金supported by the National Natural Science Foundation of China (31721004)the National Postdoctoral Program for Innovative Talents (BX20180142)+2 种基金the China Postdoctoral Science Foundation (2018M640496)the Natural Science Foundation of Jiangsu Province (BK20190520)the Fundamental Research Funds for the Central Universities (KYXK202010)。
文摘Filamentous fungal pathogens secrete effectors that modulate host immunity and facilitate infection. Fusarium graminearum is an important plant pathogen responsible for various devastating diseases. However, little is known about the function of effector proteins secreted by F. graminearum. Herein, we identified several effector candidates in the F. graminearum secretome. Among them, the secreted ribonuclease Fg12 was highly upregulated during the early stages of F. graminearum infection in soybean;its deletion compromised the virulence of F. graminearum. Transient expression of Fg12 in Nicotiana benthamiana induced cell death in a light-dependent manner. Fg12 possessed ribonuclease(RNase) activity, degrading total RNA. The enzymatic activity of Fg12 was required for its cell death-promoting effects. Importantly, the ability of Fg12 to induce cell death was independent of BAK1/SOBIR1, and treatment of soybean with recombinant Fg12 protein induced resistance to various pathogens, including F. graminearum and Phytophthora sojae. Overall, our results provide evidence that RNase effectors not only contribute to pathogen virulence but also induce plant cell death.
文摘Self-incompatibility is an intraspecific reproductive barrier to prevent self-fertilization inthe flowering plants. In many species, self-incompatibility is controlled by a single S locus with multiple alleles. So far, the only gene known in the S locus of the Solanaceae, Scrophulariaceae and Rosaceae encodes a class of ribonucleases, called self-incompatibility ribonucleases (S RNases), which have been shown to mediate stylar expression of self-incompatible reaction. As the first step to investigate their three-dimensional structure, we successfully expressed three biologically active S RNases of Antirrihnum (S2, S4 and S5) in Escherichia coli (E. coli). Their functional expressions caused no detrimental effect on host bacteria growth and provided a basis for a large scale preparation of S RNase proteins. Possible reasons for non-lethality of S RNases on E. coliare discussed.
基金the Yunnan Applied Basic Research Project(2017FD148)the State Key Basic Research and Development Plan in Kunming Institute of Zoology(GREKF17-02,to DTL)the National Natural Science Foundation of China(31760619,to XPW).
文摘Ribonuclease 6(RNase6 or RNase K6)is a protein that belongs to a superfamily thought to be the sole vertebrate-specific enzyme known for a wide range of physiological functions,including digestion,cytotoxicity,angiogenesis,male reproduction and host defense.In our study,51 functional genes and 11 pseudogenes were identified from 27 Rodentia species.Intriguingly,in the 3 main lineages of rodents there were multiple RNase6s identified in all species of Ctenohystrica,whereas only a single RNase6 was observed in other Rodentia species examined except for 2 species in the mouse-related clade.The evolutionary scenario of“birth(gene duplication)and death(gene deactivation)”and gene sorting have been demonstrated in Ctenohystrica.In addition,bursts of positive selection,diversification of isoelectric point and positive net charge have been identified in Ctenohystrica,especially at two key sites that are involved in antimicrobial function.Site Trp30 has undergone positive selection and Ile45 has changed into other residues in Group B and Group C of the Ctenohystrica.Our results demonstrated a complex and intriguing evolutionary pattern of rodent RNase6,and indicated that functional modification may have occurred,which establishes an important theoretical foundation for future functional assays in rodent RNase6.
基金supported by the National Natural Science Foundation of China(31570842 to W.C.)the National Young Thousand Talents Programthe Sichuan Province Thousand Talents Program in China
文摘The Clustered Regularly Interspaced Short _Palindromic Repeats (CRISPR)-CRISPR-associated (Cas) system is an adaptive immune system in bacteria and archaea that resists exogenous invasion through nucleic acid-mediated cleavage. In the type III-A system, the Csm complex contains five effectors and a CRISPR RNA, which edits both single stranded RNA and double stranded DNA. It has recently been demonstrated that cyclic oligoadenylates (cOAs), which are synthesized by the Csm complex, act as second messengers that bind and activate Csm6. Here, we report the crystal structures of Staphylococcus epiderrnidis Csm3 (SeCsm3) and an N-terminally truncated Csm6 (SeCsm6AN) at 2.26 and 2.0 A, respectively. The structure of SeCsm3 highly resembled previously reported Csm3 structures from other species; however, it provided novel observations allowing further enzyme characterization. The homodimeric SeCsm6AN folds into a compact structure. The dimerization of the HEPN domain leads to the formation of the ribonuclease active site, which is consistent with the reported Csm6 structures. Altogether, our studies provide a struc- tural view of the ribonuclease activity mediated by Csm3 and Csm6 of the type III-A CRISPR-Cas system.
基金Project supported in part by the National Natural Science Foundation of China.
文摘The unfolding of proteins during denaturation by guanidine or urea has been extensively studied. However, the methods hitherto employed usually provide only a limited amount of information on gross changes of such molecular properties as shape, size, or the exposure of buried aromatic residues. CD studies are hampered by high absorption of the denaturants commonly employed in the far ultraviolet region. Recent development in Fourier
基金the National Key Basic Research SpecialFunds of China (No.G19990 75 6 0 7) the National KeyScience and Technology Program of China (No.96 -90 0 - 0 9- 0 3) +1 种基金 THSJZ of Tsinghua UniversityP.R.China
文摘The thermal transition of bovine pancreatic ribonuclease A (RNase A) was investigated using proton nuclear magnetic resonance (NMR). Significant resonance overlap in the large native protein limits accurate assignments in the 1H NMR spectrum. This study proposes extending the investigation of large proteins by dynamic analysis. Comparison of the traditional method and the correlation coefficient method suggests successful application of spectrum image analysis in dynamic protein studies by NMR.
基金supported by Special Funds of Department Education,Liaoning Province (No.20272280)。
文摘Human placental ribonuclease inhibitor(hRI)is an acidic protein of Mr∼50kDa with unusually high contents of leucine and cysteine residues.It is a cytosolic protein that protects cells from the adventitious invasion of pancreatic-type ribonuclease.hRI has 32 cysteine residues,and the oxidative formation of disulfide bonds from those cysteine residues is a rapid cooperative process that inactivates hRI.The most proximal cysteine residues in native hRI are two pairs that are adjacent in sequence.In the present aork,two molecules of alanine substituting for Cys328 and Cys329 were performed by site-directed mutagenesis.The site-mutated RI cDNA was constructed into plasmid pPIC9K and then transformed Pichia pastoris GS115 by electroporation.After colony screening,the bacterium was cultured and the product was purified with affinity chromatography.The affinity of the recombinant human RI with double site mutation was examined for RNase A and its anti-oxidative effect.Results indicated that there were not many changes in the affinity for RNase A detected when compared with the wild type of RI.But the capacity of anti-oxidative effect increased by 7~9 times.The enhancement in anti-oxidative effect might be attributed to preventing the formation of disulfide bond between Cys328 and Cys329 and the three dimensional structure of RI was thereby maintained.
文摘人核糖核酸酶A(ribonuclease A, RNaseA)家族成员有13个,分别为RNase1-RNase13,它们具有很高的序列相似性,大多含有6~8个半胱氨酸并形成分子内二硫键,以维持特有的空间结构。其中,RNase1-RNase8具有多种生物活性,可概括为3类:涉及核糖核酸转录后的剪切、修饰和降解;具有抗细菌、抗真菌和抗病毒活性;以及机体免疫调节作用。而RNase9-RNase13不具有核糖核酸酶活性。因此,本文将重点对RNaseA家族成员RNase1-RNase8的结构与功能研究进行综述,重点概述决定RNaseA生物学功能的结构特征,以期指导以RNaseA为基础的抗微生物药物开发及RNaseA在机体免疫中的功能研究。