Fertilization is an effective technique to improve soil fertility and increase crop yield.The long-term effects of different fertilizers on soil considerably vary.Over 38 consecutive years of different fertilization p...Fertilization is an effective technique to improve soil fertility and increase crop yield.The long-term effects of different fertilizers on soil considerably vary.Over 38 consecutive years of different fertilization positioning experiments in a double cropping rice field of Qiyang Red Soil Experimental Station,seven different fertilization treatments including CK(no fertilization),NPK(nitrogen,phosphorus,and potassium fertilizer),M(cow manure),NPKM(nitrogen,phosphorus,and potassium with cow manure),NPM(nitrogen and phosphorus with cow manure),NKM(nitrogen and potassium with cow manure),and PKM(phosphorus and potassium with cow manure)were applied to study the effects on rice yield,soil fertility,and nutrient apparent balance in a paddy field.The results showed that the annual average yields of rice in NPKM,NPM,NKM,PKM,M,NPK and CK treatments ranged from 6214 to 11562 kg ha-1.Yields under long-term organic and inorganic treatments(NPKM,NPM,NKM and PKM)were 22.58,15.35,10.53 and 4.41%,respectively,greater than under the NPK treatment.Soil organic carbon(SOC),total nitrogen(TN),available nitrogen(AN)and available potassium(AK)concentration with long-term organic and inorganic treatment(NPKM,NPM,NKM and PKM)were significantly higher than in inorganic fertilizer(NPK)treatments.Soil total phosphorus(TP)and available phosphorus(AP)contentration with organic fertilizer combined with inorganic N and P fertilizer treatment(NPKM,NPM and PKM)were significantly higher than with inorganic fertilizer alone(NPK treatments).The average annual rice yield(11562 kg ha-1),SOC(20.88 g kg-1),TN(2.30 g kg-1),TP(0.95 g kg-1),TK(22.50 g kg-1)and AP(38.94 mg kg-1)concentrations were the highest in the NPKM treatment.The soil AN concentration(152.40 mg kg-1)and AK contentration(151.00 mg kg-1)were the highest in the NKM treatment.N and P application led to a surplus of nitrogen and phosphorus in the soil,but NPKM treatment effectively reduced the surplus compared with other treatments.Soils under all treatments were deficient in potassium.Correlation analysis showed that SOC,TN,AN,TP,and AP contentration was significantly correlated with rice yield;the correlation coefficients were 0.428,0.496,0.518,0.501,and 0.438,respectively.This study showed that the combined application of N,P,and K with cow manure had important effects on rice yield and soil fertility,but balanced application of N,P,and K with cow manure was required.展开更多
[Objective] The aim of this study was investigated the rice yield, nitrogen uptake and ^15-fertilizer fate at different transplanting density to provide scientific ba- sis for improving the yield of rice and applying ...[Objective] The aim of this study was investigated the rice yield, nitrogen uptake and ^15-fertilizer fate at different transplanting density to provide scientific ba- sis for improving the yield of rice and applying reasonably fertilizer. [Method] A field experiment was carried out to study the effect of different transplanting density on rice yield, nitrogen (N) absorption, sources of N uptake by rice and the N balance in the plant-soil systems by using ^15-labelled urea. [Result] There were no significant differences in rice yields and total N uptakes by rice between treatments 30 cm × 30 cm and 40 cm × 40 cm, but the yield of rice and total N absorption in the two treatments were remarkably higher than those in 50 cm × 50 cm treatment. The amounts of total N uptake by rice were in the range of 112.3-162.7 kg/hm2 in the three transplanting densities. The result showed that about 1/3 of the total N uptake by rice was supplied by application fertilizer and the other 2/3 was obtained from the soil N pool. The ^15N-labelled urea absorbed by rice, residual in soil and lost accounted for 16.3%-26.1%, 17.0%-20.9% and 53.0%-66.7% of the total fertilizer, respectively. A great deal of ^15N-labelled urea was lost during the rice growing season. [Conclusion] Considering the rice yield and environmental protection, the transplanting density of 30 cm×30 cm was recommended in the hilly area of Sichuan basin in the southwest China.展开更多
[Objective] The effects of ploughing Astragalus sinicus at maturity stage as green manure on paddy soil properties were studied to provide references for ad- vancing the green manure production and field sustainable d...[Objective] The effects of ploughing Astragalus sinicus at maturity stage as green manure on paddy soil properties were studied to provide references for ad- vancing the green manure production and field sustainable development. [Methods] A three-year field positioning experiment was carried out. In the first year, five differ- ent levels (0, 2.81, 5.61, 8.42, 11.23 t/hm~) of Astragalus sinicus ploughed at matu- rity stage were designed. And in the next two years, the amounts of ploughed As- tragalus sinicus at maturity stage were based on the natural growth amounts of As- tragalus sinicus at maturity stage of the former year in each plot field. The yields of Astragalus sinicus at maturity stage were estimated and ploughed directly before rice transplanting. Rice yield, soil nutrients, biological properties and water-stable aggre- gates of paddy fields were measured as well. [Results] The effective panicles and rice yields increased significantly after ploughing Astragalus sinicus at maturity stage. Meanwhile, the organic acid content in paddy field increased and the activities of soil phosphatases, invertase and catalase were higher. The soil dissolved organic carbon also increased with the increasing application of green manure. However, excess amount of green manure inhibited the soil microbial biomass carbon content. The macro aggregates and micro aggregates gathered to middle aggregates. [Conclusion] As green manure, the use of Astragalus sinicus at maturity stage could improve soil physiochemical and biological properties, improve soil fertility and increase rice yield significantly. But the ploughing amount of Astragalus sinicus at maturity stage before rice transplanting should be less than 8.42 t/hm2 (dry weight.展开更多
The additions of straw and biochar have been suggested to increase soil fertility, carbon sequestration, and crop produc- tivity of agricultural lands. To our knowledge, there is little information on the effects of s...The additions of straw and biochar have been suggested to increase soil fertility, carbon sequestration, and crop produc- tivity of agricultural lands. To our knowledge, there is little information on the effects of straw and biochar addition on soil nitrogen form, carbon storage, and super rice yield in cold waterlogged paddy soils. We performed field trials with four treatments including conventional fertilization system (CK), straw amendment 6 t ha^-1 (S), biochar amendment 2 t ha^-1 (C1), and biochar amendment 40 t ha^-1 (C2). The super japonica rice variety, Shennong 265, was selected as the test Crop. The results showed that the straw and biochar amendments improved total nitrogen and organic carbon content of the soil, reduced N2O emissions, and had little influence on nitrogen retention, nitrogen density, and CO2 emissions. The S and C1 increased NH4^+-N content, and C2 increased NO3^--N content. Both S and C1 had little influence on soil organic carbon density (SOCD) and C/N ratio. However, C2 greatly increased SOCD and C/N ratio. C1 and C2 significantly improved the soil carbon sequestration (SCS) by 62.9 and 214.0% (P〈0.05), respectively, while S had no influence on SCS. C1 and C2 maintained the stability of super rice yield, and significantly reduced CH4 emissions, global warming potential (GWP), and greenhouse gas intensity (GHGI), whereas S had the opposite and negative effects. In summary, the biochar amendments in cold waterlogged paddy soils of North China increased soil nitrogen and carbon content, improved soil carbon sequestration, and reduced GHG emission without affecting the yield of super rice.展开更多
The impacts of climate change on rice yield in China from 1961 to 2010 were studied in this paper, based on the provincial data, in order to develop scientiifc countermeasures. The results indicated that increase of a...The impacts of climate change on rice yield in China from 1961 to 2010 were studied in this paper, based on the provincial data, in order to develop scientiifc countermeasures. The results indicated that increase of average temperature improved single cropping rice production on national level by up to 11%relative to the average over the study period, however, it resulted in an overall loss of double cropping rice by up to 1.9%. The decrease of diurnal temperature range (DTR) in the major producing regions caused the decrease by up to 3.0%for single cropping rice production and 2.0%for double cropping rice production. Moreover, the contribution of precipitation change reached about 6.2%for single cropping rice production, but no signiifcant effect for double cropping rice production in recent 50 years.展开更多
From 1990,over 17 years field experiment was carried out in paddy field cultivated from infertile upland to evaluate the response of rice productivity,soil organic carbon(SOC),and total N to long-term NPK fertilizat...From 1990,over 17 years field experiment was carried out in paddy field cultivated from infertile upland to evaluate the response of rice productivity,soil organic carbon(SOC),and total N to long-term NPK fertilization or NPK combined with organic amendments.The field trials included NPK(N,P,K fertilizer),NPKRS(NPK combined with rice straw),NPK2RS(NPK combined with double amount of rice straw),NPKPM(NPK combined with pig manure) and NPKGM(NPK combined with green manure) and the cropping system was rice-rice(Oryza sativa L.) rotation.Annual rice yield,straw biomass,and harvesting index increased steadily with cultivation time in all treatments.Average annual rice yield from 1991 to 2006 was ranged from 7 795 to 8 572 kg ha-1 among treatments.Rice yields in treatments with organic amendments were usually higher than that in treatment with NPK.Contents of SOC and total N also increased gradually in the cultivation years and reached the level of 7.82 to 9.45 and 0.85 to 1.03 g kg-1,respectively,in 2006.Soil fertilities in treatments with chemical fertilization combined with organic amendments were relatively appropriate than those in treatment with NPK.There was obvious discrepancy between cumulative characters of rice yield and soil organic fertility in newly formed paddy field.Compared with relatively high rate of crop productivity improvement,cumulative rates of SOC and total N were much lower in our study.SOC and total N contents were still less than half of those in local highly productive paddy soils after 17 years cultivation in subtropical China.Present work helps to better understand the development of infertile paddy soils and to estimate the potential of yield improvement in this region.展开更多
[Objective] This study aimed to investigate the effects of cultivation methods on rice yield and economic benefits in the Dongting Lake area. [Method] A field plot experiment was conducted by adopting three different ...[Objective] This study aimed to investigate the effects of cultivation methods on rice yield and economic benefits in the Dongting Lake area. [Method] A field plot experiment was conducted by adopting three different planting patterns of artificial sowing, artificial throwing and mechanical transplanting. [Result] Rice yield of mechanical transplanting was 7.84% and 24.19% higher respectively than that of artificial sowing and artificial throwing. The effective panicles per unit area of mechanical transplanting and artificial throwing were less than that of artificial sowing. On the contrary, grains per spike, 1 000-grain weight and seed setting rate of mechanical transplanting and artificial throwing were less than those of artificial sowing. Mechanical transplanting of rice brought the highest net income 11 779.16 yuan/hm2, which was 1 697.72 and 3 631.84 yuan/hm2 higher than that of artificial throwing and artificial sowing. [Conclusion] Mechanical transplanting could promote rice productivity in Dongting Lake area, and could increase rice yields and economic returns.展开更多
Since remote sensing can provide information on the actual status of an agricultural crop, the integration between remote sensing data and crop growth simulation models has become an important trend for yield estimati...Since remote sensing can provide information on the actual status of an agricultural crop, the integration between remote sensing data and crop growth simulation models has become an important trend for yield estimation and prediction.The main objective of this research was to combine a rice growth simulation model with remote sensing data to estimate rice grain yield for different growing seasons leading to an assessment of rice yield at regional levels. Integration between NOAA (National Oceanic and Atmospheric Administration) AVHRR (Advanced Very High Resolution Radiometer) data and the rice growth simulation model ORYZA1 to develop a new software, which was named as Rice-SRS Model, resulted in accurate estimates for rice yield in Shaoxing, China, with an estimation error reduced to 1.03% and 0.79% over-estimation and 0.79% under-estimation for early, single and late season rice, respectively. Selecting suitable dates for remote sensing images was an important factor which could influence estimation accuracy. Thus, given the different growing periods for each rice season, four images were needed for early and late rice, while five images were preferable for single season rice.Estimating rice yield using two or three images was possible, however, if images were obtained during the panicle initiation and heading stages.展开更多
Soil salinity and alkalinity can inhibit crop growth and reduce yield,and this has become a global environmental concern.Combined changes in nitrogen (N) application and hill density can improve rice yields in sodic s...Soil salinity and alkalinity can inhibit crop growth and reduce yield,and this has become a global environmental concern.Combined changes in nitrogen (N) application and hill density can improve rice yields in sodic saline–alkaline paddy fields and protect the environment.We investigated the interactive effects of N application rate and hill density on rice yield and N accumulation,translocation and utilization in two field experiments during 2018 and 2019 in sodic saline–alkaline paddy fields.Five N application rates (0 (control),90,120,150,and 180 kg N ha^(-1) (N0–N4),respectively) and three hill densities(achieved by altering the distance between hills,in rows spaced 30 cm apart:16.5 cm (D1),13.3 cm (D2) and 10 cm (D3))were utilized in a split-plot design with three replicates.Nitrogen application rate and hill density significantly affected grain yield.The mathematical model of quadratic saturated D-optimal design showed that with an N application rate in the range of 0–180 kg N ha^(-1),the highest yield was obtained at 142.61 kg N ha^(-1) which matched with a planting density of 33.3×10^(4) ha^(-1).Higher grain yield was mainly attributed to the increase in panicles m^(–2).Nitrogen application rate and hill density significantly affected N accumulation in the aboveground parts of rice plants and showed a highly significant positive correlation with grain yield at maturity.From full heading to maturity,the average N loss rate of the aboveground parts of rice plants in N4 was 70.21% higher than that of N3.This is one of the reasons why the yield of N4 treatment is lower than that of the N3 treatment.Nitrogen accumulation rates in the aboveground parts under treatment N3 (150 kg N ha^(-1)) were 81.68 and 106.07% higher in 2018 and 2019,respectively,than those in the control.The N translocation and N translocation contribution rates increased with the increase in the N application rate and hill density,whereas N productivity of dry matter and grain first increased and then decreased with the increase in N application rate and hill density.Agronomic N-use efficiency decreased with an increase in N application rate,whereas hill density did not significantly affect it.Nitrogen productivity of dry matter and grain,and agronomic N-use efficiency,were negatively correlated with grain yield.Thus,rice yield in sodic saline–alkaline paddy fields can be improved by combined changes in the N application rate and hill density to promote aboveground N accumulation.Our study provides novel evidence regarding optimal N application rates and hill densities for sodic saline–alkaline rice paddies.展开更多
Ratoon rice cropping is an important component of the rice cropping system in Texas and south Louisiana,USA,and expanded to Asian countries in 1970.Two field studies were conducted with widely planted rice(Oryza sativ...Ratoon rice cropping is an important component of the rice cropping system in Texas and south Louisiana,USA,and expanded to Asian countries in 1970.Two field studies were conducted with widely planted rice(Oryza sativa L.)cultivars at Eagle Lake,Texas,USA to determine the effects of nitrogen(N)management in main(first)crop(MC)and ratoon(second)crop(RC)on RC yield.In 2012 and 2013,one cultivar(Presidio)was adopted to determine the effects of RC N management on ratoon yield and head rice yield.In 2016 and 2017,CL153,CL163 and CL272 in addition to Presidio were adopted to examine the effect of MC N management on ratoon yield and head rice yield.N applied at preflood after MC harvest considerably improved RC yield.Application of 99 kg N ha^(–1)at preflood after MC harvest was practically adequate for RC regrowth,development and approaching the yield potential for Presidio.RC could produce quite high average grain yields of 5.90 to 6.53 t ha–1 in 2012 and 2013,respectively.Main crop N rate only significantly affected MC yield;however,given N applied of 99 kg ha^(–1)at preflood after MC harvest,ratoon yield was not significantly affected by MC N rate.Neither the main nor ratoon crop N management had a significant effect on RC head rice yield.Considerable RC head rice yields(55–65%)were observed in all of the four cultivars and 4 years except for CL272 in 2016.These results indicat that without very high N fertilizer application,rice ratoon crop could produce a considerable grain yield and an expectative head rice yield.Rice ratooning could be a practical way to increase rice yields with the minimal input in south Texas and regions with a similar climate.展开更多
Straw incorporation is a global common practice to improve soil fertility and rice yield.However,the effect of straw incorporation on rice yield stability is still unknown,especially under high fertilization level con...Straw incorporation is a global common practice to improve soil fertility and rice yield.However,the effect of straw incorporation on rice yield stability is still unknown,especially under high fertilization level conditions.Here,we reported the effect of straw returning on rice yield and yield stability under high fertilization levels in the rice–wheat system over nine years.The results showed that straw incorporation did not significantly affect the average rice yield of nine years.Straw incorporation reduced the coefficient of variation of rice yield by 25.8%and increased the sustainable yield index by 8.2%.The rice yield positively correlated with mean photosynthetically active radiation (PAR) of rice growth season and the effects of straw incorporation on rice yield depended on the PAR.Straw incorporation increased the rice yield by 5.4%in the low PAR years,whereas it did not affect the rice yield in the high PAR years.Long-term straw incorporation lowered soil bulk density but improved the soil organic matter,total N,available N,available P,and available K more strongly than straw removal.Our findings suggest that straw incorporation can increase rice yield stability through improving the resistance of rice plant growth to low PAR.展开更多
This experiment explored the effects of single application of seven types of slow-and controlled-release fertilizers on rice yield and various population characteristics.Based on a study of the nitrogen(N)release char...This experiment explored the effects of single application of seven types of slow-and controlled-release fertilizers on rice yield and various population characteristics.Based on a study of the nitrogen(N)release characteristics of these fertilizers,pot experiments were conducted in 2018 and 2019 with split fertilization(CK,urea applied split equally at basal and panicle initiation stages,respectively)as control,which assessed the effects on SPAD value,yield and yield components,dynamic changes of rice tillers and dry matter accumulation.The results showed that the N release characteristics of different types of slow-and controlled-release fertilizers were significantly different.Polymer-coated urea(PCU)showed a controlledrelease mode and provided sustained release throughout the whole growth stages.Sulfur-coated urea(SCU)exhibited a slow-release mode,providing insufficient release at the middle and late stages.Urease inhibitor urea(AHA)and ureaformaldehyde(UF)yielded a rapid-release mode,with an explosive N release at the early stage and no release at the middle and late stages.These results showed that PCU delayed the peak seedling stage.Compared with CK,dry matter accumulation and SPAD showed no significant differences,and due to the continuous release of N throughout the growth stages,rice yield,spikelets per panicle,seed setting rate,and 1000-grain weight were all increased.Owing to the lack of N supply at the late stage and the low number of spikelets,SCU led to a reduction of rice yield,which is nevertheless not statistically significant.AHA and UF were susceptible to environmental factors and had varying effects on rice yield.The results of this experiment indicated that given a fixed amount of N applied in a pot,the stronger the N supply capacity and the longer the effective duration time of the fertilizer,the higher the dry matter accumulation at the late growth stage,and the higher the rice yield.展开更多
To clarify the optimal water management in large-scale fields under high temperatures at the ripening period,effective water managements during this period for improvement of yield,appearance quality and palatability ...To clarify the optimal water management in large-scale fields under high temperatures at the ripening period,effective water managements during this period for improvement of yield,appearance quality and palatability were investigated.Compared with intermittent irrigation and flooded irrigation,the soil temperature with saturated irrigation remained low throughout the day,and the decrease rate of the bleeding rate of hills was the lowest.These results suggested that the saturated irrigation maintained root activity.For the three irrigation types,the number of spikelets per m2 and 1000-grain weight were similar,however,saturated irrigation resulted in significantly higher rice yield due to improvement in the percentage of ripened grains.The saturated irrigation produced a high percentage of perfect rice grains and thicker brown rice grain,furthermore,the palatability of cooked rice was excellent because protein content and hardness/adhesion ratio were both low.Thus,under high-temperature ripening conditions,soil temperature was lowered and root activity was maintained when applying saturated irrigation after heading time.The results indicated that saturated irrigation is an effective countermeasure against high-temperature ripening damage.展开更多
Under field conditions, an experiment was conducted to study the effects of ammonification bacteria, potassium bacteria and phosphorus bacteria on nutrient availability in soil and yield of rice in the cold region of ...Under field conditions, an experiment was conducted to study the effects of ammonification bacteria, potassium bacteria and phosphorus bacteria on nutrient availability in soil and yield of rice in the cold region of China and compared to the conventional fertilization. Results showed that DF1P2 treatment (ammonifiers 1.5× 108 cfu· m2, phosphorus bacteria 1.5× 108 cfu. m2, and potassium bacteria 1.5× 108 cfu· m2) increased available nutrient concentrations in soil, increased the concentrations of N, P, and K in plant organs and increased the rice yield and was the most significantly among all the treatments. This treatment could be recommended as the best suitable biological fertilizer application rate for the rice production in the cold region of China.展开更多
Excessive nitrogen(N) fertilization in intensive agricultural areas such as the plain region of South China has resulted in low nitrogen use efficiency and serious environmental problems. To determine the optimum N ...Excessive nitrogen(N) fertilization in intensive agricultural areas such as the plain region of South China has resulted in low nitrogen use efficiency and serious environmental problems. To determine the optimum N application rate, grain yield, apparent nitrogen recovery efficiency(ANRE), apparent N loss, and ammonium(NH_3) volatilization under different N application rates in the three years from 2012 to 2014 were studied. The results showed that the relationship between grain yields and N application rate in the three years were well fitted by quadratic equations. When N application rate reached 197 kg ha^(–1) in 2012, 199 kg ha^(–1) in 2013 and 196 kg ha^(–1) in 2014, the plateau of the grain yields appeared. With the increase of N application rate, the ANRE for rice decreased which could be expressed with sigmoidal equation; when N application rate was 305 kg ha^(–1) in 2012, 275 kg ha^(–1) in 2013 and 312 kg ha^(–1) in 2014, the curves of ANRE appeared turing points. Besides, the relationship between soil Nresidual and N application rate was fitted by the quadratic equation and the maximums of soil Nresidual were reached in the three years with the N application rate of 206, 244 and 170 kg ha^(–1), respectively. Statistical analysis indicated that NH3 volatilization and apparent N loss in three years all increased with the increasing N application rate. When the amount of NH3 volatilization increased to 11.6 kg N ha^(–1) in 2012, 40.5 kg N ha^(–1) in 2013 and 57.0 kg N ha^(–1)in 2014, the apparent N loss in the three years had obvious increase. To determine the optimum N application rate, the average N application on the plateau of the grain yield was considered as the lower limit while the average N application rate at the turning points of ANRE, the residual N in soil and apparent N loss was taken as the upper limit. According to the results in three years, the optimum N application rate for rice in Zhejiang was 197–255 kg ha^(–1).展开更多
Nitrogen(N)fertilization increases rice yield,but inappropriate N fertilizer application increases N loss and the risk of environmental pollution.Short-term fertilizer postponing(FP)generally reduces N apparent surplu...Nitrogen(N)fertilization increases rice yield,but inappropriate N fertilizer application increases N loss and the risk of environmental pollution.Short-term fertilizer postponing(FP)generally reduces N apparent surplus and increases rice yields,but the effects of long-term FP on N surplus and rice yields remain unknown.Our study was the first to investigate the impacts of long-term FP(11 years)on N apparent surplus and rice yields.FP effects in the short term(≤6 years)did not affect rice yields,whereas FP effects in the long term(>6 years)increased rice yields by 13.9%compared with conventional fertilization(CF).FP did not affect panicles per unit area,1000-kernel weight,and filled-kernel rate,but spikelets per panicle increased over time due to spikelet formation stimulation.FP also reduced the N apparent surplus over time more strongly than CF owing to higher N accumulation and N utilization efficiency.FP effects in the long term also significantly increased soil organic matter,total N,and NH4_(+)^(-)N content.Our results were supported by a pot experiment,showing that rice yields in soils with a history of FP were significantly higher than those for soils without a history of FP,indicating that FP increased rice yields more strongly in later years mainly because of soil quality improvement.Our findings suggest that longterm FP can reduce N loss while increasing rice yields by improving soil quality.展开更多
A recombinant inbred line population derived from a super hybrid rice Xieyou 9308(Xieqingzao B/Zhonghui 9308) and its genetic linkage map were used to detect quantitative trait loci(QTLs) for rice yield traits und...A recombinant inbred line population derived from a super hybrid rice Xieyou 9308(Xieqingzao B/Zhonghui 9308) and its genetic linkage map were used to detect quantitative trait loci(QTLs) for rice yield traits under the low and normal nitrogen(N) levels. A total of 52 QTLs for yield traits distributed in 27 regions on 9 chromosomes were detected, with each QTL explaining 4.93%–26.73% of the phenotypic variation. Eleven QTLs were simultaneously detected under the two levels, and 30 different QTLs were detected under the two N levels, thereby suggesting that the genetic bases controlling rice growth under the low and normal N levels were different. QTLs for number of panicles per plant, number of spikelets per panicle, number of filled grains per panicle, and grain density per panicle under the two N levels were detected in the RM135–RM168 interval on chromosome 3. QTLs for number of spikelets per panicle and number of filled grains per panicle under the two N levels, as well as number of panicles per plant and grain density per panicle, under the low N level, were detected in the RM5556–RM310 interval on chromosome 8. The above described QTLs shared similar regions with previously reported QTLs for rice N recycling.展开更多
An airborne multi-spectral camera was used in this study to estimate rice yields.The experimental data were achieved by obtaining a multi-spectral image of the rice canopy in an experimental field throughout the joint...An airborne multi-spectral camera was used in this study to estimate rice yields.The experimental data were achieved by obtaining a multi-spectral image of the rice canopy in an experimental field throughout the jointing stage(July,2017)and extracting five vegetation indices.Vegetation indices and rice growth parameter data were compared and analyzed.Effective predictors were screened by using significance analysis and quantile and ordinary least square(OLS)regression models estimating rice yields were constructed.The results showed that a quantile regression model based on normalized difference vegetation indices(NDVI)and rice yields performed was best forτ=0.7 quantile.Thus,NDVI was determined as an effective variable for the rice yield estimation during the jointing stage.The accuracy of the quantile regression estimation model was then assessed using RMES and MAPE test indicators.The yields by this approach had better results than those of an OLS regression estimation model and showed that quantile regression had practical applications and research significance in rice yields estimation.展开更多
[Objective] The aim was to explore the effects of different leaching solu- tions on yield increasing of rice. [Method] Three rice parents were chosen from dif- ferent areas to treat with leaching solutions and rice le...[Objective] The aim was to explore the effects of different leaching solu- tions on yield increasing of rice. [Method] Three rice parents were chosen from dif- ferent areas to treat with leaching solutions and rice leaves were sprayed with leaching solutions in seedling stage and tillering stage, respectively. The test data were recorded. Horizontal and vertical researches were carried out on agronomic traits of rice in different varieties in test or control groups. [Result] The horizontal test showed that hybrid rice parents, submerged with traditional Chinese medicines increased significantly in rice yield and vertical research indicated that rice in control group decreased sharply in yield and in test group improved in both yield and quality, which was also true for following generations. [Conclusion] The test provides references for hybrid rice maintaining rice traits.展开更多
Middle-season rice is an important food crop in southern rice areas of China,especially in Yunnan,the main rice-producing region.However,due to the impact of low temperature at the seedling stage and high or low tempe...Middle-season rice is an important food crop in southern rice areas of China,especially in Yunnan,the main rice-producing region.However,due to the impact of low temperature at the seedling stage and high or low temperature at the booting and heading stage of middle-season rice,the yield is not stable.Based on the data of yield factors of different middle-season rice varieties planted in the same ecological site in Jingdong County from 2009 to 2016,average development period was calculated using the data of development period measured in field during 2009-2016,and the average of meteorological factors(daily average temperature,daily maximum temperature,daily minimum temperature,and sunshine hours)and total precipitation were calculated.The correlation between meteorological factors in different development periods of each year and corresponding per unit area yield was analyzed.The results show that temperature is the most important factor affecting rice yield.Sufficient light is beneficial to the increase in the number of grains per spike and thousand seed weight at the sowing-seedling emergence stage and milk maturity-maturity stage.Excessive precipitation will reduce the number of grains per spike at the booting-heading stage.Excessive precipitation decreases the number of filled grains per spike at the jointing-booting stage,and proper drainage helps increase the formation rate of ears.This study provides scientific reference for rice production and management in this county in future.展开更多
基金This study was financially supported by the earmarked fund for China Agriculture Research System(CARS-01-02A)the Natural Science Foundation of Hunan Province,China(2022NK2009)+2 种基金the Science and Technology Innovation Program of Hunan Province,China(2021RC2081)the Natural Science Foundation of Sichuan Province,China(2022NSFSC1059)the Development Program of Hunan Province,China(2021NK2029).
文摘Fertilization is an effective technique to improve soil fertility and increase crop yield.The long-term effects of different fertilizers on soil considerably vary.Over 38 consecutive years of different fertilization positioning experiments in a double cropping rice field of Qiyang Red Soil Experimental Station,seven different fertilization treatments including CK(no fertilization),NPK(nitrogen,phosphorus,and potassium fertilizer),M(cow manure),NPKM(nitrogen,phosphorus,and potassium with cow manure),NPM(nitrogen and phosphorus with cow manure),NKM(nitrogen and potassium with cow manure),and PKM(phosphorus and potassium with cow manure)were applied to study the effects on rice yield,soil fertility,and nutrient apparent balance in a paddy field.The results showed that the annual average yields of rice in NPKM,NPM,NKM,PKM,M,NPK and CK treatments ranged from 6214 to 11562 kg ha-1.Yields under long-term organic and inorganic treatments(NPKM,NPM,NKM and PKM)were 22.58,15.35,10.53 and 4.41%,respectively,greater than under the NPK treatment.Soil organic carbon(SOC),total nitrogen(TN),available nitrogen(AN)and available potassium(AK)concentration with long-term organic and inorganic treatment(NPKM,NPM,NKM and PKM)were significantly higher than in inorganic fertilizer(NPK)treatments.Soil total phosphorus(TP)and available phosphorus(AP)contentration with organic fertilizer combined with inorganic N and P fertilizer treatment(NPKM,NPM and PKM)were significantly higher than with inorganic fertilizer alone(NPK treatments).The average annual rice yield(11562 kg ha-1),SOC(20.88 g kg-1),TN(2.30 g kg-1),TP(0.95 g kg-1),TK(22.50 g kg-1)and AP(38.94 mg kg-1)concentrations were the highest in the NPKM treatment.The soil AN concentration(152.40 mg kg-1)and AK contentration(151.00 mg kg-1)were the highest in the NKM treatment.N and P application led to a surplus of nitrogen and phosphorus in the soil,but NPKM treatment effectively reduced the surplus compared with other treatments.Soils under all treatments were deficient in potassium.Correlation analysis showed that SOC,TN,AN,TP,and AP contentration was significantly correlated with rice yield;the correlation coefficients were 0.428,0.496,0.518,0.501,and 0.438,respectively.This study showed that the combined application of N,P,and K with cow manure had important effects on rice yield and soil fertility,but balanced application of N,P,and K with cow manure was required.
基金Supported by the Financial Breeding Fund for Young Scholars in Sichuan Province(2008QNJJ-016)Financial Fund for Excellent Gene Engineering Papers in Sichuan Province (2010LWJJ-008)~~
文摘[Objective] The aim of this study was investigated the rice yield, nitrogen uptake and ^15-fertilizer fate at different transplanting density to provide scientific ba- sis for improving the yield of rice and applying reasonably fertilizer. [Method] A field experiment was carried out to study the effect of different transplanting density on rice yield, nitrogen (N) absorption, sources of N uptake by rice and the N balance in the plant-soil systems by using ^15-labelled urea. [Result] There were no significant differences in rice yields and total N uptakes by rice between treatments 30 cm × 30 cm and 40 cm × 40 cm, but the yield of rice and total N absorption in the two treatments were remarkably higher than those in 50 cm × 50 cm treatment. The amounts of total N uptake by rice were in the range of 112.3-162.7 kg/hm2 in the three transplanting densities. The result showed that about 1/3 of the total N uptake by rice was supplied by application fertilizer and the other 2/3 was obtained from the soil N pool. The ^15N-labelled urea absorbed by rice, residual in soil and lost accounted for 16.3%-26.1%, 17.0%-20.9% and 53.0%-66.7% of the total fertilizer, respectively. A great deal of ^15N-labelled urea was lost during the rice growing season. [Conclusion] Considering the rice yield and environmental protection, the transplanting density of 30 cm×30 cm was recommended in the hilly area of Sichuan basin in the southwest China.
基金Supported by the Important Science and Technology Program for Agriculture of Zhejiang Province(2009C2001-TZ)the Taizhou Research and Development of Applied Technology,Zhejiang Province(091TG06)~~
文摘[Objective] The effects of ploughing Astragalus sinicus at maturity stage as green manure on paddy soil properties were studied to provide references for ad- vancing the green manure production and field sustainable development. [Methods] A three-year field positioning experiment was carried out. In the first year, five differ- ent levels (0, 2.81, 5.61, 8.42, 11.23 t/hm~) of Astragalus sinicus ploughed at matu- rity stage were designed. And in the next two years, the amounts of ploughed As- tragalus sinicus at maturity stage were based on the natural growth amounts of As- tragalus sinicus at maturity stage of the former year in each plot field. The yields of Astragalus sinicus at maturity stage were estimated and ploughed directly before rice transplanting. Rice yield, soil nutrients, biological properties and water-stable aggre- gates of paddy fields were measured as well. [Results] The effective panicles and rice yields increased significantly after ploughing Astragalus sinicus at maturity stage. Meanwhile, the organic acid content in paddy field increased and the activities of soil phosphatases, invertase and catalase were higher. The soil dissolved organic carbon also increased with the increasing application of green manure. However, excess amount of green manure inhibited the soil microbial biomass carbon content. The macro aggregates and micro aggregates gathered to middle aggregates. [Conclusion] As green manure, the use of Astragalus sinicus at maturity stage could improve soil physiochemical and biological properties, improve soil fertility and increase rice yield significantly. But the ploughing amount of Astragalus sinicus at maturity stage before rice transplanting should be less than 8.42 t/hm2 (dry weight.
基金supported by the Science and Technology Consulting Program of Chinese Academy of Engineering(2015-XY-25)the Key Technologies R&D Program of China during the 12th Five-Year Plan period(2014BAD02B06-02)+2 种基金the Special Fund for Agro-scientific Research in Public Interest of China(201303095)the Basic Research Foundation of Shenyang Science and Technology Program,China(F16-205-1-38)the Program for Changjiang Scholars and Innovative Research Team in University,China(IRT13079)
文摘The additions of straw and biochar have been suggested to increase soil fertility, carbon sequestration, and crop produc- tivity of agricultural lands. To our knowledge, there is little information on the effects of straw and biochar addition on soil nitrogen form, carbon storage, and super rice yield in cold waterlogged paddy soils. We performed field trials with four treatments including conventional fertilization system (CK), straw amendment 6 t ha^-1 (S), biochar amendment 2 t ha^-1 (C1), and biochar amendment 40 t ha^-1 (C2). The super japonica rice variety, Shennong 265, was selected as the test Crop. The results showed that the straw and biochar amendments improved total nitrogen and organic carbon content of the soil, reduced N2O emissions, and had little influence on nitrogen retention, nitrogen density, and CO2 emissions. The S and C1 increased NH4^+-N content, and C2 increased NO3^--N content. Both S and C1 had little influence on soil organic carbon density (SOCD) and C/N ratio. However, C2 greatly increased SOCD and C/N ratio. C1 and C2 significantly improved the soil carbon sequestration (SCS) by 62.9 and 214.0% (P〈0.05), respectively, while S had no influence on SCS. C1 and C2 maintained the stability of super rice yield, and significantly reduced CH4 emissions, global warming potential (GWP), and greenhouse gas intensity (GHGI), whereas S had the opposite and negative effects. In summary, the biochar amendments in cold waterlogged paddy soils of North China increased soil nitrogen and carbon content, improved soil carbon sequestration, and reduced GHG emission without affecting the yield of super rice.
基金supported by the National Basic Research Program of China(2010CB951303)the Special Fund for Agro-Scientific Research in the Public Interest(200903003)the Basic Operation Cost of China Meteorological Administration(CMA)
文摘The impacts of climate change on rice yield in China from 1961 to 2010 were studied in this paper, based on the provincial data, in order to develop scientiifc countermeasures. The results indicated that increase of average temperature improved single cropping rice production on national level by up to 11%relative to the average over the study period, however, it resulted in an overall loss of double cropping rice by up to 1.9%. The decrease of diurnal temperature range (DTR) in the major producing regions caused the decrease by up to 3.0%for single cropping rice production and 2.0%for double cropping rice production. Moreover, the contribution of precipitation change reached about 6.2%for single cropping rice production, but no signiifcant effect for double cropping rice production in recent 50 years.
基金supported by the National Basic Research Program of China (2007CB109301)the National Natural Science Foundation of China (40871122) the National Key Technology R&D Program of China (2009BADC6B03)
文摘From 1990,over 17 years field experiment was carried out in paddy field cultivated from infertile upland to evaluate the response of rice productivity,soil organic carbon(SOC),and total N to long-term NPK fertilization or NPK combined with organic amendments.The field trials included NPK(N,P,K fertilizer),NPKRS(NPK combined with rice straw),NPK2RS(NPK combined with double amount of rice straw),NPKPM(NPK combined with pig manure) and NPKGM(NPK combined with green manure) and the cropping system was rice-rice(Oryza sativa L.) rotation.Annual rice yield,straw biomass,and harvesting index increased steadily with cultivation time in all treatments.Average annual rice yield from 1991 to 2006 was ranged from 7 795 to 8 572 kg ha-1 among treatments.Rice yields in treatments with organic amendments were usually higher than that in treatment with NPK.Contents of SOC and total N also increased gradually in the cultivation years and reached the level of 7.82 to 9.45 and 0.85 to 1.03 g kg-1,respectively,in 2006.Soil fertilities in treatments with chemical fertilization combined with organic amendments were relatively appropriate than those in treatment with NPK.There was obvious discrepancy between cumulative characters of rice yield and soil organic fertility in newly formed paddy field.Compared with relatively high rate of crop productivity improvement,cumulative rates of SOC and total N were much lower in our study.SOC and total N contents were still less than half of those in local highly productive paddy soils after 17 years cultivation in subtropical China.Present work helps to better understand the development of infertile paddy soils and to estimate the potential of yield improvement in this region.
文摘[Objective] This study aimed to investigate the effects of cultivation methods on rice yield and economic benefits in the Dongting Lake area. [Method] A field plot experiment was conducted by adopting three different planting patterns of artificial sowing, artificial throwing and mechanical transplanting. [Result] Rice yield of mechanical transplanting was 7.84% and 24.19% higher respectively than that of artificial sowing and artificial throwing. The effective panicles per unit area of mechanical transplanting and artificial throwing were less than that of artificial sowing. On the contrary, grains per spike, 1 000-grain weight and seed setting rate of mechanical transplanting and artificial throwing were less than those of artificial sowing. Mechanical transplanting of rice brought the highest net income 11 779.16 yuan/hm2, which was 1 697.72 and 3 631.84 yuan/hm2 higher than that of artificial throwing and artificial sowing. [Conclusion] Mechanical transplanting could promote rice productivity in Dongting Lake area, and could increase rice yields and economic returns.
基金Project supported by the Commission of Science, Technology and Industry for National Defence, China (No.Y97# 14-6-2).
文摘Since remote sensing can provide information on the actual status of an agricultural crop, the integration between remote sensing data and crop growth simulation models has become an important trend for yield estimation and prediction.The main objective of this research was to combine a rice growth simulation model with remote sensing data to estimate rice grain yield for different growing seasons leading to an assessment of rice yield at regional levels. Integration between NOAA (National Oceanic and Atmospheric Administration) AVHRR (Advanced Very High Resolution Radiometer) data and the rice growth simulation model ORYZA1 to develop a new software, which was named as Rice-SRS Model, resulted in accurate estimates for rice yield in Shaoxing, China, with an estimation error reduced to 1.03% and 0.79% over-estimation and 0.79% under-estimation for early, single and late season rice, respectively. Selecting suitable dates for remote sensing images was an important factor which could influence estimation accuracy. Thus, given the different growing periods for each rice season, four images were needed for early and late rice, while five images were preferable for single season rice.Estimating rice yield using two or three images was possible, however, if images were obtained during the panicle initiation and heading stages.
基金financially supported by the the National Key Research and Development Program of China(2016YFD0300104)the Heilongjiang Bayi Agricultural University Program for Young Scholars with Creative Talents,China(CXRC2017001)+1 种基金the Heilongjiang Bayi Agricultural University Support Program for San Heng San Zong,China(TDJH201802)the Graduate Innovative Research Projects,China(YJSCX2019-Y104)。
文摘Soil salinity and alkalinity can inhibit crop growth and reduce yield,and this has become a global environmental concern.Combined changes in nitrogen (N) application and hill density can improve rice yields in sodic saline–alkaline paddy fields and protect the environment.We investigated the interactive effects of N application rate and hill density on rice yield and N accumulation,translocation and utilization in two field experiments during 2018 and 2019 in sodic saline–alkaline paddy fields.Five N application rates (0 (control),90,120,150,and 180 kg N ha^(-1) (N0–N4),respectively) and three hill densities(achieved by altering the distance between hills,in rows spaced 30 cm apart:16.5 cm (D1),13.3 cm (D2) and 10 cm (D3))were utilized in a split-plot design with three replicates.Nitrogen application rate and hill density significantly affected grain yield.The mathematical model of quadratic saturated D-optimal design showed that with an N application rate in the range of 0–180 kg N ha^(-1),the highest yield was obtained at 142.61 kg N ha^(-1) which matched with a planting density of 33.3×10^(4) ha^(-1).Higher grain yield was mainly attributed to the increase in panicles m^(–2).Nitrogen application rate and hill density significantly affected N accumulation in the aboveground parts of rice plants and showed a highly significant positive correlation with grain yield at maturity.From full heading to maturity,the average N loss rate of the aboveground parts of rice plants in N4 was 70.21% higher than that of N3.This is one of the reasons why the yield of N4 treatment is lower than that of the N3 treatment.Nitrogen accumulation rates in the aboveground parts under treatment N3 (150 kg N ha^(-1)) were 81.68 and 106.07% higher in 2018 and 2019,respectively,than those in the control.The N translocation and N translocation contribution rates increased with the increase in the N application rate and hill density,whereas N productivity of dry matter and grain first increased and then decreased with the increase in N application rate and hill density.Agronomic N-use efficiency decreased with an increase in N application rate,whereas hill density did not significantly affect it.Nitrogen productivity of dry matter and grain,and agronomic N-use efficiency,were negatively correlated with grain yield.Thus,rice yield in sodic saline–alkaline paddy fields can be improved by combined changes in the N application rate and hill density to promote aboveground N accumulation.Our study provides novel evidence regarding optimal N application rates and hill densities for sodic saline–alkaline rice paddies.
文摘Ratoon rice cropping is an important component of the rice cropping system in Texas and south Louisiana,USA,and expanded to Asian countries in 1970.Two field studies were conducted with widely planted rice(Oryza sativa L.)cultivars at Eagle Lake,Texas,USA to determine the effects of nitrogen(N)management in main(first)crop(MC)and ratoon(second)crop(RC)on RC yield.In 2012 and 2013,one cultivar(Presidio)was adopted to determine the effects of RC N management on ratoon yield and head rice yield.In 2016 and 2017,CL153,CL163 and CL272 in addition to Presidio were adopted to examine the effect of MC N management on ratoon yield and head rice yield.N applied at preflood after MC harvest considerably improved RC yield.Application of 99 kg N ha^(–1)at preflood after MC harvest was practically adequate for RC regrowth,development and approaching the yield potential for Presidio.RC could produce quite high average grain yields of 5.90 to 6.53 t ha–1 in 2012 and 2013,respectively.Main crop N rate only significantly affected MC yield;however,given N applied of 99 kg ha^(–1)at preflood after MC harvest,ratoon yield was not significantly affected by MC N rate.Neither the main nor ratoon crop N management had a significant effect on RC head rice yield.Considerable RC head rice yields(55–65%)were observed in all of the four cultivars and 4 years except for CL272 in 2016.These results indicat that without very high N fertilizer application,rice ratoon crop could produce a considerable grain yield and an expectative head rice yield.Rice ratooning could be a practical way to increase rice yields with the minimal input in south Texas and regions with a similar climate.
基金the National Key Research and Development Program of China (2017YFD0301203, 2017YFD0300100, and 2018YFD0300803)Jiangsu Agriculture Science and Technology Innovation Fund (CX(18)1002)。
文摘Straw incorporation is a global common practice to improve soil fertility and rice yield.However,the effect of straw incorporation on rice yield stability is still unknown,especially under high fertilization level conditions.Here,we reported the effect of straw returning on rice yield and yield stability under high fertilization levels in the rice–wheat system over nine years.The results showed that straw incorporation did not significantly affect the average rice yield of nine years.Straw incorporation reduced the coefficient of variation of rice yield by 25.8%and increased the sustainable yield index by 8.2%.The rice yield positively correlated with mean photosynthetically active radiation (PAR) of rice growth season and the effects of straw incorporation on rice yield depended on the PAR.Straw incorporation increased the rice yield by 5.4%in the low PAR years,whereas it did not affect the rice yield in the high PAR years.Long-term straw incorporation lowered soil bulk density but improved the soil organic matter,total N,available N,available P,and available K more strongly than straw removal.Our findings suggest that straw incorporation can increase rice yield stability through improving the resistance of rice plant growth to low PAR.
基金the National Key Research and Development Program of China(22017YFD0301203,2018YFD0300803)the Jiangsu Key Research and Development Program,China(BE2017369)the Jiangsu Agricultural Science and Technology Innovation Fund,China(CX(18)1002)。
文摘This experiment explored the effects of single application of seven types of slow-and controlled-release fertilizers on rice yield and various population characteristics.Based on a study of the nitrogen(N)release characteristics of these fertilizers,pot experiments were conducted in 2018 and 2019 with split fertilization(CK,urea applied split equally at basal and panicle initiation stages,respectively)as control,which assessed the effects on SPAD value,yield and yield components,dynamic changes of rice tillers and dry matter accumulation.The results showed that the N release characteristics of different types of slow-and controlled-release fertilizers were significantly different.Polymer-coated urea(PCU)showed a controlledrelease mode and provided sustained release throughout the whole growth stages.Sulfur-coated urea(SCU)exhibited a slow-release mode,providing insufficient release at the middle and late stages.Urease inhibitor urea(AHA)and ureaformaldehyde(UF)yielded a rapid-release mode,with an explosive N release at the early stage and no release at the middle and late stages.These results showed that PCU delayed the peak seedling stage.Compared with CK,dry matter accumulation and SPAD showed no significant differences,and due to the continuous release of N throughout the growth stages,rice yield,spikelets per panicle,seed setting rate,and 1000-grain weight were all increased.Owing to the lack of N supply at the late stage and the low number of spikelets,SCU led to a reduction of rice yield,which is nevertheless not statistically significant.AHA and UF were susceptible to environmental factors and had varying effects on rice yield.The results of this experiment indicated that given a fixed amount of N applied in a pot,the stronger the N supply capacity and the longer the effective duration time of the fertilizer,the higher the dry matter accumulation at the late growth stage,and the higher the rice yield.
基金supported by the grants from the Project of the National Agriculture and Food Research Organization Bio-oriented Technology Research Advancement Institution in Japan(the Special Scheme to Create Dynamism in Agriculture,Forestry and Fisheries through Deploying Highly Advanced Technology)(Grant No.shoNavi1000)。
文摘To clarify the optimal water management in large-scale fields under high temperatures at the ripening period,effective water managements during this period for improvement of yield,appearance quality and palatability were investigated.Compared with intermittent irrigation and flooded irrigation,the soil temperature with saturated irrigation remained low throughout the day,and the decrease rate of the bleeding rate of hills was the lowest.These results suggested that the saturated irrigation maintained root activity.For the three irrigation types,the number of spikelets per m2 and 1000-grain weight were similar,however,saturated irrigation resulted in significantly higher rice yield due to improvement in the percentage of ripened grains.The saturated irrigation produced a high percentage of perfect rice grains and thicker brown rice grain,furthermore,the palatability of cooked rice was excellent because protein content and hardness/adhesion ratio were both low.Thus,under high-temperature ripening conditions,soil temperature was lowered and root activity was maintained when applying saturated irrigation after heading time.The results indicated that saturated irrigation is an effective countermeasure against high-temperature ripening damage.
文摘Under field conditions, an experiment was conducted to study the effects of ammonification bacteria, potassium bacteria and phosphorus bacteria on nutrient availability in soil and yield of rice in the cold region of China and compared to the conventional fertilization. Results showed that DF1P2 treatment (ammonifiers 1.5× 108 cfu· m2, phosphorus bacteria 1.5× 108 cfu. m2, and potassium bacteria 1.5× 108 cfu· m2) increased available nutrient concentrations in soil, increased the concentrations of N, P, and K in plant organs and increased the rice yield and was the most significantly among all the treatments. This treatment could be recommended as the best suitable biological fertilizer application rate for the rice production in the cold region of China.
基金supported by the National Natural Science Foundation of China(41501238)the Key Technologies R&D Program of China during the 12th Five-Year Plan period(2015BAD23B03)the Special Fund for Agro-scientific Research in the Public Interest from the Ministry of Agriculture,China(201003014-02-08)
文摘Excessive nitrogen(N) fertilization in intensive agricultural areas such as the plain region of South China has resulted in low nitrogen use efficiency and serious environmental problems. To determine the optimum N application rate, grain yield, apparent nitrogen recovery efficiency(ANRE), apparent N loss, and ammonium(NH_3) volatilization under different N application rates in the three years from 2012 to 2014 were studied. The results showed that the relationship between grain yields and N application rate in the three years were well fitted by quadratic equations. When N application rate reached 197 kg ha^(–1) in 2012, 199 kg ha^(–1) in 2013 and 196 kg ha^(–1) in 2014, the plateau of the grain yields appeared. With the increase of N application rate, the ANRE for rice decreased which could be expressed with sigmoidal equation; when N application rate was 305 kg ha^(–1) in 2012, 275 kg ha^(–1) in 2013 and 312 kg ha^(–1) in 2014, the curves of ANRE appeared turing points. Besides, the relationship between soil Nresidual and N application rate was fitted by the quadratic equation and the maximums of soil Nresidual were reached in the three years with the N application rate of 206, 244 and 170 kg ha^(–1), respectively. Statistical analysis indicated that NH3 volatilization and apparent N loss in three years all increased with the increasing N application rate. When the amount of NH3 volatilization increased to 11.6 kg N ha^(–1) in 2012, 40.5 kg N ha^(–1) in 2013 and 57.0 kg N ha^(–1)in 2014, the apparent N loss in the three years had obvious increase. To determine the optimum N application rate, the average N application on the plateau of the grain yield was considered as the lower limit while the average N application rate at the turning points of ANRE, the residual N in soil and apparent N loss was taken as the upper limit. According to the results in three years, the optimum N application rate for rice in Zhejiang was 197–255 kg ha^(–1).
基金Funding was provided by the National Key Research and Development Program of China(2017YFD0301203,2017YFD0300100,and 2018YFD0300803)Jiangsu Agriculture Science and Technology Innovation Fund(CX(18)1002).
文摘Nitrogen(N)fertilization increases rice yield,but inappropriate N fertilizer application increases N loss and the risk of environmental pollution.Short-term fertilizer postponing(FP)generally reduces N apparent surplus and increases rice yields,but the effects of long-term FP on N surplus and rice yields remain unknown.Our study was the first to investigate the impacts of long-term FP(11 years)on N apparent surplus and rice yields.FP effects in the short term(≤6 years)did not affect rice yields,whereas FP effects in the long term(>6 years)increased rice yields by 13.9%compared with conventional fertilization(CF).FP did not affect panicles per unit area,1000-kernel weight,and filled-kernel rate,but spikelets per panicle increased over time due to spikelet formation stimulation.FP also reduced the N apparent surplus over time more strongly than CF owing to higher N accumulation and N utilization efficiency.FP effects in the long term also significantly increased soil organic matter,total N,and NH4_(+)^(-)N content.Our results were supported by a pot experiment,showing that rice yields in soils with a history of FP were significantly higher than those for soils without a history of FP,indicating that FP increased rice yields more strongly in later years mainly because of soil quality improvement.Our findings suggest that longterm FP can reduce N loss while increasing rice yields by improving soil quality.
基金supported by the National Natural Science Foundation of China (Grant No. 31200916)the Zhejiang Provincial Project for Rice Seed Industry of Scientific and Technological Innovation Team (Grant No. 2010R50024-16)the Academy of Institute Foundation for Basic Scientific Research of China (Grant No. 2012RG002-7)
文摘A recombinant inbred line population derived from a super hybrid rice Xieyou 9308(Xieqingzao B/Zhonghui 9308) and its genetic linkage map were used to detect quantitative trait loci(QTLs) for rice yield traits under the low and normal nitrogen(N) levels. A total of 52 QTLs for yield traits distributed in 27 regions on 9 chromosomes were detected, with each QTL explaining 4.93%–26.73% of the phenotypic variation. Eleven QTLs were simultaneously detected under the two levels, and 30 different QTLs were detected under the two N levels, thereby suggesting that the genetic bases controlling rice growth under the low and normal N levels were different. QTLs for number of panicles per plant, number of spikelets per panicle, number of filled grains per panicle, and grain density per panicle under the two N levels were detected in the RM135–RM168 interval on chromosome 3. QTLs for number of spikelets per panicle and number of filled grains per panicle under the two N levels, as well as number of panicles per plant and grain density per panicle, under the low N level, were detected in the RM5556–RM310 interval on chromosome 8. The above described QTLs shared similar regions with previously reported QTLs for rice N recycling.
基金Supported by the National Key R&D Program of China(2016YFD020060305)。
文摘An airborne multi-spectral camera was used in this study to estimate rice yields.The experimental data were achieved by obtaining a multi-spectral image of the rice canopy in an experimental field throughout the jointing stage(July,2017)and extracting five vegetation indices.Vegetation indices and rice growth parameter data were compared and analyzed.Effective predictors were screened by using significance analysis and quantile and ordinary least square(OLS)regression models estimating rice yields were constructed.The results showed that a quantile regression model based on normalized difference vegetation indices(NDVI)and rice yields performed was best forτ=0.7 quantile.Thus,NDVI was determined as an effective variable for the rice yield estimation during the jointing stage.The accuracy of the quantile regression estimation model was then assessed using RMES and MAPE test indicators.The yields by this approach had better results than those of an OLS regression estimation model and showed that quantile regression had practical applications and research significance in rice yields estimation.
文摘[Objective] The aim was to explore the effects of different leaching solu- tions on yield increasing of rice. [Method] Three rice parents were chosen from dif- ferent areas to treat with leaching solutions and rice leaves were sprayed with leaching solutions in seedling stage and tillering stage, respectively. The test data were recorded. Horizontal and vertical researches were carried out on agronomic traits of rice in different varieties in test or control groups. [Result] The horizontal test showed that hybrid rice parents, submerged with traditional Chinese medicines increased significantly in rice yield and vertical research indicated that rice in control group decreased sharply in yield and in test group improved in both yield and quality, which was also true for following generations. [Conclusion] The test provides references for hybrid rice maintaining rice traits.
文摘Middle-season rice is an important food crop in southern rice areas of China,especially in Yunnan,the main rice-producing region.However,due to the impact of low temperature at the seedling stage and high or low temperature at the booting and heading stage of middle-season rice,the yield is not stable.Based on the data of yield factors of different middle-season rice varieties planted in the same ecological site in Jingdong County from 2009 to 2016,average development period was calculated using the data of development period measured in field during 2009-2016,and the average of meteorological factors(daily average temperature,daily maximum temperature,daily minimum temperature,and sunshine hours)and total precipitation were calculated.The correlation between meteorological factors in different development periods of each year and corresponding per unit area yield was analyzed.The results show that temperature is the most important factor affecting rice yield.Sufficient light is beneficial to the increase in the number of grains per spike and thousand seed weight at the sowing-seedling emergence stage and milk maturity-maturity stage.Excessive precipitation will reduce the number of grains per spike at the booting-heading stage.Excessive precipitation decreases the number of filled grains per spike at the jointing-booting stage,and proper drainage helps increase the formation rate of ears.This study provides scientific reference for rice production and management in this county in future.