Chloroplast transit peptides(CTPs) can be used to transport non-chloroplastic proteins into the chloroplasts. Here, we studied the CTPs of three rice(Oryza sativa L.) chloroplast-localized proteins and found that thei...Chloroplast transit peptides(CTPs) can be used to transport non-chloroplastic proteins into the chloroplasts. Here, we studied the CTPs of three rice(Oryza sativa L.) chloroplast-localized proteins and found that their CTPs could be used to transport non-chloroplast-localized proteins into the chloroplasts. Fusion proteins lacking the CTP remained located in the cytoplasm. Furthermore, we constructed green fluorescent protein fusion vectors with the three CTPs and three non-chloroplast-localized proteins, Ghd10, MULTI-FLORET SPIKELET1(MFS1), and SHORTENED UPPERMOST INTERNODE 1(SUI1). After transforming these constructs into rice protoplasts, the fusion proteins all localized in the chloroplasts. Collectively, our results showed that these CTPs can transport non-chloroplast-localized proteins into the chloroplasts, and more importantly, these CTPs can be applied to engineer chloroplast metabolism.展开更多
We analyzed the sequence alignment on 25 AA rice and 24 non-AA rice chloroplasts using two length diversity markers (ORF 100 and ORF29-TrnCGCA) and four sequence markers existed in introns of rps16 gene and TrnTUGU-Tr...We analyzed the sequence alignment on 25 AA rice and 24 non-AA rice chloroplasts using two length diversity markers (ORF 100 and ORF29-TrnCGCA) and four sequence markers existed in introns of rps16 gene and TrnTUGU-TrnLUAA spacer to explore the chloroplast diversity of different types of rice using PCR amplification and sequencing. Results showed that in terms of the length of ORF100 and ORF29-TrnCGCA, chloroplast DNA (cp DNA) of Hainan ordinary wild rice, Dongxiang ordinary wild rice, Hepu ordinary wild rice and three-line cytoplasmic male sterile wild rice were indica-type, Chaling ordinary wild rice, Fusui ordinary wild rice, Niwara wild rice, Brazilian upland rice and Lemont were japonica-type among in AA genome. Besides, all non-AA wild rice was japonica-type. There were 4 indica-japonica markers utilizing introns of rps16 gene and TrnTUGU-TrnLUAA. We found that all the ordinary wild rice in Chaling and Fusui of AA genome presented as japonica specific sites, while the others owned two indica and japonica specific sites, respectively. There were two indica-japonica sites separately and a 6-base specific fragment in three-line cytoplasmic male sterile materials except Yuetai A, simultaneously, 2-base difference from Hainan wild rice. Moreover, Brazilian upland rice and Lemont were entire japonica specific sites. Result of three markers indicated that the cp DNA of non-AA wild rice was japonica-type and result of one marker showed indica-type. Sequencing results also suggested that wild rice existed many polymorphic base sites, CCDD genome, wart wild rice and malay wild rice had their own specific sites. In conclusion, significant differentiation trend of indica-japonica exhibits in chloroplast of ordinary wild rice, and non-AA wild rice is generally japonica-type. The cytoplasmic polymorphism level of three-line sterile lines is low. It is worth considering whether the cytoplasm of Honglian-type sterile line Yuetai A comes from Hainan ordinary wild rice. Furthermore, genetic polymorphisms in wild rice are far more than in cultivar.展开更多
W25 was a gamma-irradiation induced albinorice mutant line, which only expressed in thespecial temperatures (see figure). At 30 Cand 35 C, the seedling leaves of W25 showedgreenish or normal green, but they exhibiteda...W25 was a gamma-irradiation induced albinorice mutant line, which only expressed in thespecial temperatures (see figure). At 30 Cand 35 C, the seedling leaves of W25 showedgreenish or normal green, but they exhibitedalbino at 25℃, which could be greenish afterthe fourth leaf extension and recovered to be展开更多
Among various physiological responses to salt stress, the synthesis of a lectin-related protein of 14.5 kDa was observed in rice plants (Oryza sativa L.) under the treatment of 170 mmol/L NaCl. In order to better un...Among various physiological responses to salt stress, the synthesis of a lectin-related protein of 14.5 kDa was observed in rice plants (Oryza sativa L.) under the treatment of 170 mmol/L NaCl. In order to better understand the role of the SALT protein in the physiological processes involving salinity, it was irnmunolocalized in mesophilic cells of leaf sheath and blade of a rice variety IAC-4440 following monoclonal antibodies produced by hybridome culture technique. This variety turned out to be an excellent model for that purpose, since it accumulates SALT protein even in absence of salt treatment and it has been classified as moderately sensitive to salinity and a superior grain producer. This feature was relevant for this work since it allowed the use of plants without the deleterious effects caused by salinity. Immunocytochemistry assays revealed that the SALT protein is located in the stroma of chloroplasts under non-stressing condition. Since the chloroplast is the main target affected by salinity and considering that the SALT protein does not present any apparent signal peptide for organelle localization, its lectin-like activity seems to play an important role in the establishment of stable complexes, either to other proteins or to oligosaccharides that are translocated to the chloroplast.展开更多
叶色突变是一类十分明显的性状突变,在高等植物的叶绿素合成、叶绿体结构、功能、遗传、分化与发育等基础研究中均具有重要意义。到目前为止,已鉴定多个重要的水稻功能基因,据不完全统计,水稻中至少已定位了79个叶色突变位点,并已成功...叶色突变是一类十分明显的性状突变,在高等植物的叶绿素合成、叶绿体结构、功能、遗传、分化与发育等基础研究中均具有重要意义。到目前为止,已鉴定多个重要的水稻功能基因,据不完全统计,水稻中至少已定位了79个叶色突变位点,并已成功克隆出多个叶色相关基因,其中OsCHLH、OsCAO1、OsCAO2、chlorina1、chlorina9、ygl等直接参与编码叶绿素合成,其余基因均参与叶绿体发育调控。在日本晴(Nipponbare)T-DNA插入突变体库中筛选到一份对温度敏感的白条纹突变体gws(green-white-stripe),遗传分析表明它来自组织培养过程中的单隐性基因突变。利用gws与培矮64杂交组合的F2代群体,将Gws精细定位于第6染色体标记InDel15和InDel16之间,物理距离为73kb,此区间内包含13个基因。基因组序列分析发现,突变体在核糖核苷二磷酸还原酶小亚基(ribonucleoside-diphosphate reductase small chain,RNRS1)编码区第314~315碱基发生缺失,第316~317碱基由GC变为TT,导致该基因阅读框移码突变,蛋白质翻译提前终止。该基因是已经报道的水稻白条纹叶基因St1(Stripe1)的等位基因,gws突变体较st1突变体的白条纹出现早且明显,gws白条纹表型出现在第2片叶之后,而st1的白条纹表型仅出现在第4或5片叶之后。展开更多
基金supported by the National Natural Science Foundation of China(Grant Nos.31601284 and 31661143006)the Transgenic Plant Research and Commercialization Project of the Ministry of Agriculture of China(Grant No.2016ZX08001003-002)+1 种基金Zhejiang Province Outstanding Youth Fund(Grant No.LR16C130001)the Collaborative Innovation Project of the Chinese Academy of Agricultural Sciences(Grant No.Y2016XT05)
文摘Chloroplast transit peptides(CTPs) can be used to transport non-chloroplastic proteins into the chloroplasts. Here, we studied the CTPs of three rice(Oryza sativa L.) chloroplast-localized proteins and found that their CTPs could be used to transport non-chloroplast-localized proteins into the chloroplasts. Fusion proteins lacking the CTP remained located in the cytoplasm. Furthermore, we constructed green fluorescent protein fusion vectors with the three CTPs and three non-chloroplast-localized proteins, Ghd10, MULTI-FLORET SPIKELET1(MFS1), and SHORTENED UPPERMOST INTERNODE 1(SUI1). After transforming these constructs into rice protoplasts, the fusion proteins all localized in the chloroplasts. Collectively, our results showed that these CTPs can transport non-chloroplast-localized proteins into the chloroplasts, and more importantly, these CTPs can be applied to engineer chloroplast metabolism.
文摘We analyzed the sequence alignment on 25 AA rice and 24 non-AA rice chloroplasts using two length diversity markers (ORF 100 and ORF29-TrnCGCA) and four sequence markers existed in introns of rps16 gene and TrnTUGU-TrnLUAA spacer to explore the chloroplast diversity of different types of rice using PCR amplification and sequencing. Results showed that in terms of the length of ORF100 and ORF29-TrnCGCA, chloroplast DNA (cp DNA) of Hainan ordinary wild rice, Dongxiang ordinary wild rice, Hepu ordinary wild rice and three-line cytoplasmic male sterile wild rice were indica-type, Chaling ordinary wild rice, Fusui ordinary wild rice, Niwara wild rice, Brazilian upland rice and Lemont were japonica-type among in AA genome. Besides, all non-AA wild rice was japonica-type. There were 4 indica-japonica markers utilizing introns of rps16 gene and TrnTUGU-TrnLUAA. We found that all the ordinary wild rice in Chaling and Fusui of AA genome presented as japonica specific sites, while the others owned two indica and japonica specific sites, respectively. There were two indica-japonica sites separately and a 6-base specific fragment in three-line cytoplasmic male sterile materials except Yuetai A, simultaneously, 2-base difference from Hainan wild rice. Moreover, Brazilian upland rice and Lemont were entire japonica specific sites. Result of three markers indicated that the cp DNA of non-AA wild rice was japonica-type and result of one marker showed indica-type. Sequencing results also suggested that wild rice existed many polymorphic base sites, CCDD genome, wart wild rice and malay wild rice had their own specific sites. In conclusion, significant differentiation trend of indica-japonica exhibits in chloroplast of ordinary wild rice, and non-AA wild rice is generally japonica-type. The cytoplasmic polymorphism level of three-line sterile lines is low. It is worth considering whether the cytoplasm of Honglian-type sterile line Yuetai A comes from Hainan ordinary wild rice. Furthermore, genetic polymorphisms in wild rice are far more than in cultivar.
文摘W25 was a gamma-irradiation induced albinorice mutant line, which only expressed in thespecial temperatures (see figure). At 30 Cand 35 C, the seedling leaves of W25 showedgreenish or normal green, but they exhibitedalbino at 25℃, which could be greenish afterthe fourth leaf extension and recovered to be
文摘Among various physiological responses to salt stress, the synthesis of a lectin-related protein of 14.5 kDa was observed in rice plants (Oryza sativa L.) under the treatment of 170 mmol/L NaCl. In order to better understand the role of the SALT protein in the physiological processes involving salinity, it was irnmunolocalized in mesophilic cells of leaf sheath and blade of a rice variety IAC-4440 following monoclonal antibodies produced by hybridome culture technique. This variety turned out to be an excellent model for that purpose, since it accumulates SALT protein even in absence of salt treatment and it has been classified as moderately sensitive to salinity and a superior grain producer. This feature was relevant for this work since it allowed the use of plants without the deleterious effects caused by salinity. Immunocytochemistry assays revealed that the SALT protein is located in the stroma of chloroplasts under non-stressing condition. Since the chloroplast is the main target affected by salinity and considering that the SALT protein does not present any apparent signal peptide for organelle localization, its lectin-like activity seems to play an important role in the establishment of stable complexes, either to other proteins or to oligosaccharides that are translocated to the chloroplast.
文摘叶色突变是一类十分明显的性状突变,在高等植物的叶绿素合成、叶绿体结构、功能、遗传、分化与发育等基础研究中均具有重要意义。到目前为止,已鉴定多个重要的水稻功能基因,据不完全统计,水稻中至少已定位了79个叶色突变位点,并已成功克隆出多个叶色相关基因,其中OsCHLH、OsCAO1、OsCAO2、chlorina1、chlorina9、ygl等直接参与编码叶绿素合成,其余基因均参与叶绿体发育调控。在日本晴(Nipponbare)T-DNA插入突变体库中筛选到一份对温度敏感的白条纹突变体gws(green-white-stripe),遗传分析表明它来自组织培养过程中的单隐性基因突变。利用gws与培矮64杂交组合的F2代群体,将Gws精细定位于第6染色体标记InDel15和InDel16之间,物理距离为73kb,此区间内包含13个基因。基因组序列分析发现,突变体在核糖核苷二磷酸还原酶小亚基(ribonucleoside-diphosphate reductase small chain,RNRS1)编码区第314~315碱基发生缺失,第316~317碱基由GC变为TT,导致该基因阅读框移码突变,蛋白质翻译提前终止。该基因是已经报道的水稻白条纹叶基因St1(Stripe1)的等位基因,gws突变体较st1突变体的白条纹出现早且明显,gws白条纹表型出现在第2片叶之后,而st1的白条纹表型仅出现在第4或5片叶之后。