The vertical migration of Aphelenchoides besseyi under different temperatures and humidities and at different rice growth stages was investigated. It was found that the optimum temperature for the development and repr...The vertical migration of Aphelenchoides besseyi under different temperatures and humidities and at different rice growth stages was investigated. It was found that the optimum temperature for the development and reproduction of A. besseyiwas 25-30℃. At the same temperature, the rate of vertical migration increased with rising relative humidity. Artificial inoculation tests showed that at the elongation stage, nematodes survived mainly on the upper and middle parts of rice culms and the number of nematodes decreased by 50% at 20 days after inoculation compared with that at 5 days after inoculation. Whereas at the booting stage, nematodes accumulated in young panicles and reproduced quickly,, and the average number of nematodes at 20 days after inoculation increased to 164.5, three times of that at 5 days after inoculation.展开更多
Rice(Oryza sativa L.), a tropical and subtropical crop, is susceptible to low temperature stress during seedling, booting, and flowering stages, which leads to lower grain quality levels and decreasing rice yields. ...Rice(Oryza sativa L.), a tropical and subtropical crop, is susceptible to low temperature stress during seedling, booting, and flowering stages, which leads to lower grain quality levels and decreasing rice yields. Cold tolerance is affected by multiple genetic factors in rice, and the complex genetic mechanisms associated with chilling stress tolerance remain unclear. Here, we detected seven quantitative trait loci(QTLs) for cold tolerance at booting stage and identified one cold tolerant line, SIL157, in an introgression line population derived from a cross between the indica variety Guichao 2, as the recipient, and Dongxiang common wild rice, as the donor. When compared with Guichao 2, SIL157 showed a stronger cold tolerance during different growth stages. Through an integrated strategy that combined QTL-mapping with expression profile analysis, six candidate genes, which were up-regulated under chilling stress at the seedling and booting developmental stages, were studied. The results may help in understanding cold tolerance mechanisms and in using beneficial alleles from wild rice to improve the cold tolerance of rice cultivars through molecular marker-assisted selection.展开更多
Phosphorus (P) and zinc (Zn) deficiencies are the major problems that decrease crop productivity under rice-wheat cropping system. Field experiments were conducted to investigate impacts of P (0, 40, 80 and 120 k...Phosphorus (P) and zinc (Zn) deficiencies are the major problems that decrease crop productivity under rice-wheat cropping system. Field experiments were conducted to investigate impacts of P (0, 40, 80 and 120 kg/hm^2) and Zn levels (0, 5, 10 and 15 kg/hm^2) on dry matter (DM) accumulation and partitioning, and harvest index of three rice genotypes 'fine (Bamati-385) vs. coarse (F-Malakand and Pukhraj)' at various growth stages (tiliering, heading and physiological maturity). The experiments were conducted at farmers' field at Batkhela in Northwestern Pakistan for two years in summer 2011 and 2012. The two year pooled data reveled that there were no differences in percent of DM partitioning into leaves and culms with application of different P and Zn levels, and genotypes at tillering. The highest P level (120 kg/hm^2) partitioned more DM into panicles than leaves and culms at heading and physiological maturity stages. The highest Zn level (15 kg/hm^2) accumulated more DM and partitioned more DM into panicles than leaves and culms at heading and physiological maturity stages. The hybrid rice (Pukhraj) produced and partitioned more DM into panicles than F-Malakand and Bamati-385 at heading and physiological maturity stages. Higher DM accumulation and greater amounts of partitioning into panicles at heading and physiological maturity stages was noticed with increase in P and Zn levels, and the increase was significantly higher in the coarse rice genotypes than fine. We concluded that the growing hybrid rice with application of 120 kg/hm^2 P + 15 kg/hm^2 Zn not only increases total DM accumulation and partitioned greater amounts into the reproductive plant parts (panicles) but also results in higher harvest index.展开更多
基金supported by the National High Technology Research and Development Program of China (Grant No. 2001AA249021)
文摘The vertical migration of Aphelenchoides besseyi under different temperatures and humidities and at different rice growth stages was investigated. It was found that the optimum temperature for the development and reproduction of A. besseyiwas 25-30℃. At the same temperature, the rate of vertical migration increased with rising relative humidity. Artificial inoculation tests showed that at the elongation stage, nematodes survived mainly on the upper and middle parts of rice culms and the number of nematodes decreased by 50% at 20 days after inoculation compared with that at 5 days after inoculation. Whereas at the booting stage, nematodes accumulated in young panicles and reproduced quickly,, and the average number of nematodes at 20 days after inoculation increased to 164.5, three times of that at 5 days after inoculation.
基金supported by the National Natural Science Foundation of China(31371585 and 30971755)the Beijing Youth Talent,China(31056102)
文摘Rice(Oryza sativa L.), a tropical and subtropical crop, is susceptible to low temperature stress during seedling, booting, and flowering stages, which leads to lower grain quality levels and decreasing rice yields. Cold tolerance is affected by multiple genetic factors in rice, and the complex genetic mechanisms associated with chilling stress tolerance remain unclear. Here, we detected seven quantitative trait loci(QTLs) for cold tolerance at booting stage and identified one cold tolerant line, SIL157, in an introgression line population derived from a cross between the indica variety Guichao 2, as the recipient, and Dongxiang common wild rice, as the donor. When compared with Guichao 2, SIL157 showed a stronger cold tolerance during different growth stages. Through an integrated strategy that combined QTL-mapping with expression profile analysis, six candidate genes, which were up-regulated under chilling stress at the seedling and booting developmental stages, were studied. The results may help in understanding cold tolerance mechanisms and in using beneficial alleles from wild rice to improve the cold tolerance of rice cultivars through molecular marker-assisted selection.
文摘Phosphorus (P) and zinc (Zn) deficiencies are the major problems that decrease crop productivity under rice-wheat cropping system. Field experiments were conducted to investigate impacts of P (0, 40, 80 and 120 kg/hm^2) and Zn levels (0, 5, 10 and 15 kg/hm^2) on dry matter (DM) accumulation and partitioning, and harvest index of three rice genotypes 'fine (Bamati-385) vs. coarse (F-Malakand and Pukhraj)' at various growth stages (tiliering, heading and physiological maturity). The experiments were conducted at farmers' field at Batkhela in Northwestern Pakistan for two years in summer 2011 and 2012. The two year pooled data reveled that there were no differences in percent of DM partitioning into leaves and culms with application of different P and Zn levels, and genotypes at tillering. The highest P level (120 kg/hm^2) partitioned more DM into panicles than leaves and culms at heading and physiological maturity stages. The highest Zn level (15 kg/hm^2) accumulated more DM and partitioned more DM into panicles than leaves and culms at heading and physiological maturity stages. The hybrid rice (Pukhraj) produced and partitioned more DM into panicles than F-Malakand and Bamati-385 at heading and physiological maturity stages. Higher DM accumulation and greater amounts of partitioning into panicles at heading and physiological maturity stages was noticed with increase in P and Zn levels, and the increase was significantly higher in the coarse rice genotypes than fine. We concluded that the growing hybrid rice with application of 120 kg/hm^2 P + 15 kg/hm^2 Zn not only increases total DM accumulation and partitioned greater amounts into the reproductive plant parts (panicles) but also results in higher harvest index.